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Abstract

We consider the problem of learning sparsely used overcemgictionaries, where each observa-
tion is a sparse combination of elements from an unknownoaveplete dictionary. We establish
exact recovery when the dictionary elements are mutuatighierent. Our method consists of a
clustering-based initialization step, which provides ppraximate estimate of the true dictionary
with guaranteed accuracy. This estimate is then refinedrvitegative algorithm with the follow-
ing alternating steps: 1) estimation of the dictionary ioefts for each observation through
minimization, given the dictionary estimate, and 2) estioraof the dictionary elements through
least squares, given the coefficient estimates. We ediahhs, under a set of sufficient conditions,
our method converges at a linear rate to the true dictionawyal as the true coefficients for each
observation.

Keywords: Dictionary learning, sparse coding, overcomplete dicites, alternating minimiza-
tion, lasso.

1. Introduction
The problem of dictionary learning can be stated as follayigen observationy” € R?*", the task
is to decompose it as

Y = A*X*, A* e R X* e R™™ (1)
A* is referred to as thdictionary matrix and.X™* is the coefficientmatrix, and both are unknown.
We consider the challenging case when the number of dicioglaments- > d. Without further
constraints, the solution td)is not unique. A popular framework is to assume that thefiierft
matrix X* is sparse, and that each observafigne R? is a sparse combination of the dictionary
elements (i.e. columns of the dictionary matrix). This peob is known asparse codingnd it
has been argued that sparse coding can provide a succineseefation of the observed data, given
only unlabeled samples, se@l¢hausen and Field997 Lee et al, 2006. Through this lens of un-
supervised learning, dictionary learning has recentlgixed increased attention from the learning
community, e.g.Mehta and Gray2013 Balasubramanian et ak013 Maurer et al.2013).
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Although several methods exist for sparse coding, mostashtlack guaranteeSpielman et al.
(2012 recently provided a method for guaranteed recovery whenlittionary matrixA* € R4<"
is a basis. This implies that the number of dictionary elasen< d, whered is the observed
dimension. However, in most settings, the dictionarpvercompletgr > d) as overcomplete
representations can provide greater flexibility in modglas well as better robustness to noise,
see [ewicki and Sejnowski2000 Bengio et al. 2012 Elad 2010 for details. In this paper, we
establishexactrecovery of sparsely used overcomplete dictionaries.

Summary of Results: We establish exact recovery of the dictionary and the coefffianatrix
under a set of natural conditions, viz., the dictionarys$igs a mutual incoherence condition, each
observation consists efdictionary elements, and the coefficients are generated drprobabilistic
model with a uniformly random sparsity pattern. Our methaddictionary learning that consists
of two phases. The initialization phase is a clusteringetdggocedure for recovering the dictionary
with bounded error. In particular, we establish that th@vecy error of the initialization procedure
is bounded by a constant (dependent onlyjpras long as the sparsity satisfies- O (d'/4,r1/4).
The number of samples needed for this initialization pracedcales as = O (r(logr + log d)).

The second stage of our method consists of an alternatingniaiation scheme which out-
puts successively improved estimates of the coefficierdgf@dictionary through lasso and least-
squares steps respectively. We establish convergence widhal optimum when the alternating
minimization is initialized with an approximate dictioyawith an error of at mosp (1/32). Fur-
ther, whens = O (dl/ﬁ) and the number of samples satisfies- O (r?), we establish a linear rate
of convergence for the alternating minimization procedorthe true dictionary.

Thus, taken together, the two stages of our method yieldt egaovery of both the dictionary
and the coefficient matrix, as long as the sparsity levesfesis = O (d'/%,r!/8), and the number
of samples is: = O (r?). We believe that this is the first exact recovery result fetidnary learn-
ing in the overcomplete setting. Note that our alternatirigimmization guarantee is independent of
the initialization procedure, and it is entirely possilbeuse other initialization procedures for the
alternating minimization algorithm. Indeed, the recerd anncurrent work ofArora et al.(2013
can be seen as another initialization procedure for alt@gnaninimization, and we discuss these
implications in related work below.

Finally, we present numerical simulations confirming theedr rate of convergence for the
alternating minimization procedure, and thereby dematisg the extent of gains beyond the ini-
tialization step. We also empirically test the recoveryfgenance of the procedure, and find that it
succeeds witlhh = O (r) samples, and hence suggesting room for tightening our siratyfuture
work.

Related Work:  There have been many works on dictionary learning both frotinearetical
and empirical viewpointHillar and Somme(2011) consider conditions for identifiability of sparse
coding. However, the number of samples required to estatlentifiability is exponential in for
the general case. Most closely related to our w@ielman et al(2012 provide exact recovery
results for ard; based method, but they focus on tliedercompletesetting, wherer < d. We
consider the overcomplete setting where d.

There exist many heuristics for dictionary learning, whiebrk well in practice in many con-
texts, but lack theoretical guarantees. For instaheg, et al.(2006 propose an iterativé; and
£5 optimization procedure similar to the the method of optirdaéections Engan et al. 1999.
Another popular method is K-SVD, which iterates betweernegion of X and given an esti-
mate of X, updates the dictionary estimate using a spectral proeednrthe residual. Other
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works establish local optimality of the true solutigd*, X*) for certain non-convex programs
in the noiselessJenatton et g/.2010 Geng et al. 2011 as well as noisy Jenatton et gl.2012
Gribonval and Schnas2010), but do not prescribe algorithms which can reach the triatisa
(A*, X*). Recent works \ainsencher et §1.2011, Mehta and Gray2013 Maurer et al. 2012
Thiagarajan et al2013 provide generalization bounds for predictive sparsermpdivithout com-
putational considerations.

Finally, our results are closely related to the recent wdrkrora et al.(2013, carried out inde-
pendently and concurrently with our work. They provide apragimate recovery result followed
by an alternating minimization procedure. A key distinotioetween our alternating minimiza-
tion procedure as compared to theirs is that we usedngesamples in each iteration, while they
require fresh samples for each iteration of alternatingimmization. This enables us to obtadx-
act recovery of the dictionary when = Q(r?), whereas the error in their method is only below
exp (—O (n/r?)). Our algorithm is also robust in the sense that we do not éxpemcover the
complete support in the first iteration — we gradually recomere and more elements of the support
as our dictionary estimate gets better. On the other haruta et al.(2013 employ different prob-
abilistic arguments allowing them to handle larger levdlsgarsity, in terms of andd. Overall,
we believe the techniques of two papers can be combined ®dbaetter sample complexity with
respect to both sparsityand the desired accuracy parameter

The remainder of the paper is organized as follows. We pteseralgorithms next, followed
by our assumptions and the recovery results. We providd pkatches in Section 3, and simulation
results are described in Section 4. Detailed proofs can dedfan the longer versions of the paper,
with the initialization technique ilgarwal et al.(20130 and the alternating minimization analysis
in Agarwal et al.(20133.

2. Algorithm

Notation:  Let[n] := {1,2,...,n}. For a vectorv or a matrixWW, we will use the shorthand
Supp(v) and Supp(WW) to denote the set of non-zero entriesvoind W respectively. Let|wl|
denote the’s norm of vectorw, and similarly for a matriXV, ||W|| denotes its spectral norm. For
amatrixX, X*, X; and X} denote the" row, i" column and(s, j)" element ofX respectively. For
agraphG = (V, E), let N (i) denote set of neighbors for nodén G.

2.1. Initial Estimate of Dictionary Matrix

The first step is to obtain an initial estimateof the dictionary elements, and is given in Algoritim
The estimated is then employed in alternating steps to estimate the camffianatrix and re-
estimate the dictionary matrix respectively.

Given sample¥’, we first construct the correlation graph,,.(,), where the nodes are samples
{Y1,Ys,...Y,} and an edggY;,Y;) € G, implies that|(Y;, Y;)| > p, for some threshold
p > 0 (Figurel shows an example of a typical correlation graph under owmagtons). We then
determine a good subset of samples vielwstering procedure on the graph as follows: we first
randomly sample an edd&’-, Y;-) € G.ur(,) and consider the intersection of the neighborhoods

of Y;« andYj«, denoted by§. We further employ Uniquelntersection routine in Proceduto de-
termine if S is a “good set” for estimating a dictionary element. Thisosé by ensuring that the set
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Figure 1: Sample correlation grafh.... with nodes{Y;} and edggY;,Y;) s.t. [(Y;,Y;)| > p.
§1,§2 are the sets returned as true from Uniquelntersection guvee The edges la-
beled “good” above refers to good anchor pairs which satisigue intersection in Al-
gorithm1,while the bad anchor pair does not satisfy the unique ietéien. Good anchor
pairs lead to formation of sef§; and.S,.

S has a sufficient number of edden the correlation graph. For instance, the procedure wiiinn
true when evaluated on the green edges lab8leod but false on the red edges labeledd Once

S is determined to be a good set, we then proceed by computngrtipirical covariance matrik

of the samples i, and output its top singular vector as the estimate of aatiaty element. The
method is repeated over all edges in the correlation graphgare that all the dictionary elements
get estimated with high probability.

At a high level, the above procedure aims to find large clignethe correlation graph. For
instance, in Figuré&, the sets§1, §2 are the sets which are returned as true by the Uniquelntensec
Procedure, when the node pairs labeled as “good” in the figrr@ised as anchor sampkés and
Y;«. On the other hand, note that a bad anchor pair which sitseabvbrlap of multiple cliques
is not returned as true by the Uniquelntersection Procedtras, this procedure yields subsets of
samples which correspond to large cliques in the correlagiaph. Once, such a subset is found,
Algorithm 1 computes SVD over the samples in such sets. As our proofsi@ritionstrate, any such
cligue S; involves samples that all contairuaiquedictionary element in common, which can then
be recovered approximately by the subsequent SVD step.

2.2. Alternating Minimization

Once an initial estimate of the dictionary is obtained, werahte between two procedures, viz., a
sparse recovery step for estimating the coefficients giwdintaonary, and a least squares step for a
dictionary given the estimates of the coefficients (detiéspresented in AlgorithrB).

The sparse recovery step of Algorith?ris based orf;-regularization, followed by threshold-
ing. The thresholding is required for us to guarantee thastipport set of our coefficient estimate
X(t) is asubsetof the true support with high probability. Once we have amneste of the co-
efficients, the dictionary is re-estimated through leasiasgs. The overall algorithmic scheme is
popular for dictionary learning, and there are a number ofaaés of the basic method. For in-
stance, the/;-regularized problem in step 3 can also be replaced by otierst sparse recovery

1. For convenience to avoid dependency issues, in Proc&dmpartition§ into sets consisting of disjoint node pairs
and determine if there are sufficient number of node pairghkvaie neighbors.
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Algorithm 1 InitDictionaryLearr{Y’, eqict, p): Initial step for estimating dictionary elements.
Input: SamplesY” = [Y;j|...|Y,]. Correlation thresholg. Desired separation parametgr.;
between recovered dictionary elements.
Output: Initial Dictionary EstimateA.
Construct correlation grapficor () S:t. (Y;,Y;) € Geon(p) When|(Y;, Y;)| > p.
SetA « 0.
for each edgeYi-, V) € Georr(p) dO
S — NGCOrr(p)( ) N NGCOrr(p)( “).
if Uniquelntersectlow Georr(p)) then
L« ZY g 2 Y;Y," anda « u;, whereu; is top singular vector of.
if minye 5 ||a - b|| > 2eqict then
A« Au{a}
end if
end if
end for
ReturnA

Procedure 1Uniquelntersectioft, G): Determine if samples i have a unique intersection.
Input:  SetS with 27 vectorsYy, . . . Yoi and graphG with Y7, .. ., Yoi as nodes.
Output: Indicator variable UNIQUBENT
PartitionS into setsSy, . .., Sz such that eachS;| = 2.
if |{t|S; € G}| > % then
UNIQUELINT % 1
else
UNIQUELINT «+ 0
end if
Return UNIQUEINT

procedures such as OMPropp and Gilbert2007) or GraDeS Garg and KhandekaR009. More
generally the exact lasso and least-squares steps maylaee@pvith other optimization methods
for computational efficiency, e.gJénatton et al2010).

3. Guarantees

In this section, we provide our exact recovery result and alearly specify all the required as-
sumptions od* and X *. We then provide guarantees for each of the individual dfiefimlization
step and alternating minimization steps) in SecB8ahand SectiorB8.3, respectively. We provide a
brief sketch of our proof for each of the steps in Secfioh

3.1. Assumptions and exact recovery result

We start by formally describing the assumptions needechfomain recovery result of this paper.

Assumptions on the dictionary:
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Algorithm 2 AltMinDict (Y, A(0), €p): Alternating minimization for dictionary learning
Input: SamplesY, initial dictionary estimateA(0), accuracy sequencg and sparsity levek.
Thresholding functiorV,(a) = a if |a| > p and0 o.w.
1: for iterationst =0,1,2,..., T — 1do

2. for sampleg =1,2,...,ndo
3: X(t+1), = argminger-||z||;
such that)|Y; — A(t)z||, < .

4: end for
5. Threshold: X (t + 1) = Tgse, (X (t + 1)).
6: EstimateA(t+1) =Y X(t+1)"
7. Normalize: A(t + 1), = m
8: end for
Output:  A(T)

(A1) Mutual Incoherence: Without loss of generality, assume that all the elementsarmal-
ized: ||Af|| = 1, for i € [r]. We assume pairwise incoherence condition on the dictjonar

elements, i.e., for some, > 0, we have[(A7, A%)| < % foralli,j € [r].

(A2) Bound on the Spectral Norm: The dictionary matrix has bounded spectral norm, i.e., for
somey; > 0, we have|| A*|| < py,/Z.

Assumptions on the coefficients:

(B1) Non-zero Entries in Coefficient Matrix: We assume that the non-zero entriesXof are
drawn i.i.d. from a zero-mean unit-variance distributiangd satisfy the following a.sm <
| X5 < M, Vi, j.

(B2) Sparse Coefficient Matrix: The columns of coefficient matrix hagenon-zero entries which
are selected uniformly at random from the set ofadized subsets df], i.e. | Supp(X;)| =
s, Vi € [n].We requires to satisfy

A mdvt (4 mA\Y? 18 (M4
s < ¢1min M\/—M_O, <,LL_%W> ,T (M) ,

for some universal constant > 0. Constantsn, M are as specified above.

Assumption(A1) on normalization of dictionary elements is without loss ehgrality since
we can always rescale the dictionary elements and the pomdig coefficients and obtain the
same observations. However, the incoherence assumptioadcigl in establishing our guarantees.
In particular, incoherence also leads to a bound on theigestrisometry property (RIP) constant
(Rauhuf 2010. The assumptiorfA2) provides a bound on the spectral norm4if. Note that
the incoherence and spectral assumptions are satisfiedhigithprobability (w.h.p.) when the
dictionary elements are randomly drawn from a mean-zeregswissian distribution.

Assumption(B1) imposes lower and upper bounds on the non-zero entrigs*of We use
the lower bound assumption o%i*(z, j) for simplicity of exposition, as explained in SectiBry,
we can remove this assumption as the thresholding coefficiedgorithm 2 decreases with each
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iteration. Assumptiofi32) on sparsity in the coefficient matrix is crucial for identfilty of the
dictionary learning problem.
We now give the main result of this paper.

Theorem 1 (Exact recovery) Suppose assumptiofdl) — (A2) and (B1) — (B2) are satisfied.
Then there exists a universal constagssuch that, if

1. Sample Complexity: n > c3 722 log 2,

2. Choice of Parameters for Initial Dictionary Estimation: inputsp and eg;. to Algorithm1
are chosen such that

m?  s2M?pg 1 1 2 1
=— - >0, and - (=] <& <~
P~ Vd ’ 2 <259232> Cdict = g

3. Choice of Parameters for Alternating Minimization: Algorithm 2 uses a sequence of ac-
curacy parametersy = 1/2592s? and

. 250505° _ @
t+1 — t > 5
Vi 2

Then the alternating minimization procedure (Algorit@nwhen seeded with Algorithi) outputs
A(t) at thet-th step ¢ > 1) that satisfies the following with probability at least- 25 — 2n24:

(2)

min_[|z4;(t) — Af|l, < V2e, V1 <i <,
ze{-1,1}
wheree, is as given in hypothesis3) above. In particular, aftefl’ = O(log(<2)) steps of Algo-
rithm 2, we obtain:

min ||zA4;(t) — Aflly <€, V1 <@ <7, Ve > 0.
ze{-1,1}
Remarks: Note the sign ambiguity in recovery of the dictionary eletsesince we can exchange
the signs of the dictionary elements and the coefficientbtaio the same observations.

Note that Theorem guarantees that we can recover the diction&fyto an arbitrary precision
e (based on the number of iteratioisof Algorithm 2 ), givenn = O (r?) samples. We contrast
this with the results ofArora et al.(2013, who also provide recovery guarantees to an arbitrary
accuracy, but only if the number of samples is allowed to increasé)és2 log %)

Establishing the above result requires two main ingredjeriz., guaranteeing an error bound
for the initial dictionary estimation step, and proving adbconvergence result for the alternating
minimization step, and obtaining a bound on tasin of attractionfor the solution consisting of
the true dictionary and coefficient matrices. Below, we mewvhese individual results explicitly.

3.2. Guarantees for the Initialization Step

We now give the result for approximate recovery of the diwdiy in the initialization step.

Theorem 2 (Approximate recovery of dictionary) Suppose the output of Algorithtnis A(0).
Fix o € (0,1/20). Under assumption§Al) — (A2) and(B1) — (B2), and if
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1. Sample Complexity: n > c3 -5 log 5, for a large enough constant, andn?s < 1,

2. Choice of Parameters for Initial Dictionary Estimation: inputsp and eq;. to Algorithm1
are chosen such that
2 2 2 2
m s“M 32sM 1
TR and7<£+ﬂ+—+a +—> < e < 7

F= " ’ m2 \Vds @ d NG

then, with probability greater thah — 2n26, there exists a permutation matriX such that:

€4 = ?é%ﬂ}}(ze{rgill,l-i—l} |24 — (PA(0))5 < 328% <'u—\/;_ + % + — —l— T+ $>
Remarks: We note that the error in Theorethdoes not go down with the number of samples
n, since it depends on geometric properties of the dictiqribgt are determined by the dimension
dependent factors such as- andd. However, the error probability does go down with the number
of samples, since the sample correlation graph become<erasingly accurate representative of
the population version.
For the approximate recovery of dictionary elements, it$wout that a less stringent requirement

on the sparsity level and the sample complexity suffices.cipailly, we can replace assumption
(B2) with the weaker condition < ¢; min (%f/l—%, L;‘QILML:, r1/4\/%) , which suffices for the error
in Theorem2 to beo(1). The more stringent requirement on sparsity arises in Emedrsince we
need the error from Theore&ito be at mosO (1/32) for the subsequent alternating minimization
steps to succeed. Note that the initialization step alscalagder requirement on the number of
samples, and does not need the conditior= O (r*log(1/6)). Thus, we obtain a near linear

sample complexity for our initialization method.

3.3. Guarantees for Alternating Minimization

We now prove a local convergence result for alternating mizetion. We assume that we have
access to a good initial estimate of the dictionary:

(C1) Initial dictionary with guaranteed error bound:  We assume that we have access to an
initial dictionary estimated(0) such that

1
& = i AF — A0)i]ly <~

Theorem 3 (Local linear convergence) Under assumption§A1)-(A2), (B1)-(B2) and(C1), if
1. Sample Complexity: n > ¢3 max (r?,rM?2s) log 2
2. Choice of Parameters for Alternating Minimization: Algorithm 2 uses a sequence of ac-
curacy parametersy = 1/2592s? and
o 25050;“336
t+1 7\/& t-
Then, with probability at least — 24 the iterateA(¢) of Algorithm2 satisfies for alk > 1:

I{nm }HZA (1) = Aflly < V2, V1<i <
z€
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Remarks: The consequences of Theoréare powerful combined with our Assumptidis2)
and the recurrence (since(B2) ensures that; forms a decreasing sequence). In particular, it is
implied that with high probability we obtain,

min [[ZA(0); = A%y < 27

Given the above bound, we need at mOstlog, <) in order to ensuré|zA(T), — A%, < €
for all the dictionary elements = 1,2,...,r. In the convex optimization parlance, the result
demonstrates a local linear convergence of Algorithio the globally optimal solution under an
initialization condition. Another way of interpreting orgsult is that the global optimum hasasin
of attractionof size(2 (1/32) for our alternating minimization procedure under thesei@ggions
(since we requirgy = O (1/s%)).

We note that TheorerB does not crucially rely on initialization specifically byettoutput of
Algorithm 1, and admits any other initialization satisfying Assumpt{@’'1). In particular, some of
the assumptions ifB1) — (B2) are not essential for TheoreBnbut are onIy made for the overall

result of Theoreni. Indeed, it suffices to have a sparsity level satlsfyang . / = for a universal

constante, > 0 (without any dependence of). The theorem also does not rely on lower bounded
entries, and only needsX*|| . < M. We also recall that the lasso step in Algorititcan be
replaced with a different robust sparse recovery proceduite qualitatively similar results.

As remarked earlier, the recent workAifora et al.(2013 provides an alternative initialization
strategy for our alternating minimization procedure. lkdleunder our sample complexity assump-
tion, their OVERLAPPINGAVERAGE method provides a solution withhy = O (s/4/r) assuming

s=0 (max(r2/5, \/E))

3.4. Overview of Proof

In this section, we first provide a proof for Theordrasing Theorem@ and3. We then outline the
key steps in proving Theoren2sand3.

Proof of Theorem 1 In order to establish the theorem, we just need to verify dliadhe precon-
ditions of Theorem® and 3 are satisfied. We start by checking the preconditions of fdme,
for which we need to specify a value of the constantWe will choosea = em?/(s~9/2M?) for
a small enough universal constantThis imposes the requirement that> c3r/(a?s)log(d/6).
Note that we have

ro rs® M* < M? < r2 M?
s Emi o ZmE S Emd

where the first equality follows from the setting®@find the first inequality comes from Assumption
(B2) on the sparsity level. This establishes the sample @xitp requirement in Theorerd Based
on this setting ofx, we observe thatay/s + a?s)M?/m? = O(s~*). Similarly, based on the
assumption (B2), it can be verified that all the remainingiein the error boune?, of Theorem2
areO(s™%), yieldinge = O(s™).

Specifically, this ensures that Theor@mupplies a dictionaryl (0) satisfying Assumption (C1)
in Theoren®. Itis easily checked that using Assumption (B2)/2s < r2, so that the sample com-

plexity assumption in Theorelis also met. Consequently the result of Theof@wmill guarantee
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local linear convergence, establishing TheortkerAs one final remark, it is also using Assumption
(B2) that we can verif25050u1 5% /v/d < 1/2, so thate; 1 < €;/2, ensuring that we always reduce
our error by a factor of 2. This completes the proof.

Analysis of initial dictionary estimation:  The core intuitions for this step can be described in
terms of the relationships between the two graphs, viz ctiefficient bipartite grapl...¢ and the
sample correlation grapf..,;, shown in Figure® andl respectively.B .. consists of dictionary
elements{ A} on one side and the samplg¥;} on the other. There is an edge betwagmnd A’
iff X*é- # 0, and N 5(Y;) denotes the neighborhood Bf in the graphB...-

Now given this bipartite grapB..., for each dictionary element?, consider a set of sampfes
which (pairwise) have only one dictionary elemetjtin common, and denote such a setpy.e.
Ci = {Vi,k € S: Np(Yi) N Np(Y)) = A, Vk,I € S}. Intuitively, the setsS constructed in
Algorithm 1 are our proxies fo€;. Indeed, the first part of the proof is to demonstrate thagfor
random coefficient matriX *, adequately large cliqu&s exist in the graptB et -

Figure 2: Bipartite grapli? mapping dictionary elements], . .. Ay to samples7,...Y,,. See text
for definition ofC;.

Our subsequent analysis is broadly divided into two paits, @stablishing that (large) sefts; }
can be found efficiently, and that the dictionary elementstiEmestimated accurately once such sets
{C;} are found. We start with a proposition that demonstratesctineectness of Proceduteat
identifying these cliques. We use the notatidnig-intersect(Y;, Y;) to denote that; andY; have
exactly one dictionary element in common.

Proposition 4 (Correctness of Procedurel) Suppos€Yi«,Yj«) € Geon(p). SUppose that® <
r/1536 andy < 1/64. Then Algorithml returns the value ofinig-intersect(Y;«,Y;«) correctly
with probability at leastl — 2 exp(—+27).

Given a large sample of elements with a unique dictionarynete (sayAj) in common @ in
Algorithm 1), we next show that the subsequent SVD step recovers thisrticy element approx-
imately. Intuitively this happens since each samyjles S containsA; with a coefficient at least

m (in absolute value). Hence the covariance matrias a larger component aload than other
dictionary elements, which leads to approximate recoveyhe top singular vector.

Proposition 5 (Accuracy of SVD) Consider anchor samplés- andY;- such thafUnig-intersect(Y;+, Yj+)
in Algorithm 1 is satisfied, and wlog, let/5(Y;+) N N p(Yj+) = {A}}. Recall the definition of

2. Note that such a set need not be unique.

10
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in Algorithm 1, and further defind. := > icd Y;Y," andn := ]§]. If @ is the top singular vector of
L, then there exists a universal constarstuch that for any) < a < 1/20 we have:

~ 32SM ‘u
: _A* 2 Daor et ”1 2 -
Jpin | llea = Aflly < =5 <\/d_+ y + ta +\/§)

with probability at leastl — dexp (—can).

Note the ambiguity in signs above, since SVD cannot recdwersign of the top singular vector.
The proposition essentially yields the Theorem since the &ound above is identical to the bound
in Theorem2, and the result follows by lower bounding the number of sa®splin the above
proposition.

Analysis of alternating minimization:  Given an approximate estimate of the dictionary, we then
establish a local convergence result for alternating nigaton.

For ease of notation, let us consider just one iteration gbAthm 2 and denoteX (¢t + 1) as
X, A(t+1) asA and A(t) asA. Then we have the least-squares update

A—A =YXt - A = A*X*XT - A XXt = A*AXXT,

whereAX = X* — X. This means that we can understand the error in dictionargvery by
the error in the least squares operatoK X *. In particular, we can further expand the error in a
columnp as: A, — A*, = A*)(AX X)) + A%, (AXXJF)I\)”, where the notatiohp represents the
collection of aII indices apart from. Hence we see two sources of error in our dictionary estimate
The eIemen(AXX+) causes the rescaling df, relative toA*,,. However, this is a minor issue
since the renormallzatlon would correct it.

More serious is the contribution from the off-diagonal ter(*ﬂ&XX*)]\gp, which corrupt our
estimateA,, with other dictionary elements beyontf,,. Indeed, a crucial argument in our proof is
controlling the contribution of these terms at an apprdplyasmall level. In order to do that, we
start by controlling the magnitude df X .

Lemma 6 (Error in sparse recovery) LetAX := X (t) — X*. Assume thasys/+/d < 0.1 and
/3¢, < 0.1 Then, we hav8upp(AX) C Supp(X*) and the error bound AX ||, < 9se;.

This lemma is very uesful in our error analysis, since weldistathat any matriX¥?” satisfying
Supp(W) C Supp(X™*) has a good bound on its spectral norm (even if the entriesndepe
A* X¥).

Lemma 7 With probability at least — rexp ( ) for everyr x n matrix W' s.t. Supp(W) C

Supp(X*), we have|W ||, < 2[|W [looy/ 2.

A particular consequence of this lemma is that it guarartteesvertibility of the matrixX X ', so
that the pseudo-invers& " is well-defined for subsequent least squares updates. Wextresent
the most crucial step which is controlling the oﬁ-diagotmms(AXX+)\”

Lemma 8 (Off-diagonal error bound) With probability at least — rexp( Cn)—rexp (—42),

we have uniformly for eveny € [r] and everyA X such that| AX || < 288s

o], =y, < 2181
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The lemma uses the earlier two lemmas along with some othelliany results. Given these
lemmas, the proof of the main theorem follows with some aigeBpecifically, for any unit vector
w such thatw L A*,, we can bound the normalized inner proddet A,) /|| A,|, which suffices
to obtain the result of the theorem.

4. Experiments

0 Error vs Iteration (d=100, r=200, s=3) Error vs N (d=100, r=100, s=3, n=C s r log(r))
en=15srlogr
#n=2srlogr
¥n=25srlogr
“+n=3srlogr
n=3.5srlogr
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Figure 3: (a): Average error after each step alternatingmaation step of Algorithm2 on log-
scale. (b): Average error after the initialization proced@Algorithm 1) and after5
alternating minimization steps of Algorithg (c): Sample complexity requirement of the
alternating minimization algorithm. For ease of experitsewe initialize the dictionary
using a random perturbation of the true dictionary rathanthsing Algorithml which
should in fact give better initial point with smaller error.

Alternating minimization/descent approaches have beefelwiused for dictionary learning
and several existing works show effectiveness of these gdstbn real-world/synthetic datasets
(Balasubramanian et a013 Thiagarajan et al2013. Hence, instead of replicating those results,
in this section we focus on illustrating the following thrkey properties of our algorithms via
experiments in a controlled setting: a) Advantage of aétBng minimization over one-shot ini-
tialization, b) linear convergence of alternating miniatian, ¢) sample complexity of alternating
minimization.

Data generation model Each entry of the dictionary matriX is chosen i.i.d. fromV(0,1).
Note that, random Gaussian matrices are known to satisbherence and the spectral norm bound
(Vershynin 2010. The support of each column &f was chosen independently and uniformly from
the set of alk-subsets ofr]. Similarly, each non-zero element &fwas chosen independently from
the uniform distribution of—2, —1] U [1, 2]. We use the GraDeS algorithm Gfarg and Khandekar
(2009 to solve the sparse recovery step, as it is faster than.|¥gsaneasure error in the recovery

(Ai,Af)?
[ENH ST
the third plot averages ovéf runs. The implementation is in Matlab.

Linear convergence In the first set of experiments, we fixed= 100, » = 200 and measured
error after each step of our algorithm for increasing valfes. Figure3 (a) plots error observed
after each iteration of alternating minimization; the fitata point refers to the error incurred by the
initialization method. As expected due to Theorgmve observe a geometric decay in the error.

One-shot vs iterative algorithnt It is conceivable that the initialization procedure of Aig
rithm 1 itself is sufficient to obtain an estimate of the dictionaptaireasonable accuracy. of
Algorithm 2. Figure3(b) shows that this is not the case. The figure plots the emroegovery vs
the number of samples used for both Algoritinand Algorithm?2. It is clear that the recovery

of dictionary byerror(A) = max; /1 — . The first two plots are for a typical run and

12
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error of the alternating minimization procedure is sigmifitty smaller than that of the initialization
procedure. For example, for = 2.5sr logr with s = 3,7 = 200,d = 100, initialization incurs
error of .56 while alternating minimization incurs error ab—¢. Note however that the recovery
accuracy of the initialization procedure is non-trivialdaaiso crucial to the success of alternating
minimization- a random vector iR? would give an error of — é = 0.99, where as the error after
initialization procedure isz 0.55.

Sample complexity Finally, we study sample complexity requirement of therlating minimiza-
tion algorithm which isn = O (r2 log r) according to Theorer, assuming good enough initial-
ization. Figure3(c) suggests that in fact onty (r) samples are sufficient for success of alternating
minimization. The figure plots the probability of successhwespect td: for various values of.

A trial is said to succeed if at the end 2if iterations, the error is smaller than—¢. Since we focus
only on the sample complexity of alternating minimizatiare use a faster initialization procedure:
we initialize the dictionary by randomly perturbing thedrdictionary asA(0) = A* + Z, where
each element of is an/\/(0,0.5) random variable. Figurg (c) shows that the success probability
transitions at nearly the same value for various values stiggesting that the sample complexity
of the alternating minimization procedure in this regime-ef O (d) is justO(r).

5. Conclusion

In this paper we present an exact recovery result for legrnicoherent and overcomplete dictionar-
ies with sparse coefficients. The first part of our result aseevel initialization procedure, which
uses a clustering-style algorithm to approximately rective dictionary elements. The second step
of our approach is an alternating minimization procedurécivis quite widely used by practition-
ers for this problem already. We believe that our resultsaarenportant and timely advance in the
understanding of this problem. There is an increasingéstesn supervised and unsupervised fea-
ture learning methods in machine learning. However, we bhavextremely rudimentary theoretical
understanding of these problems as compared to standasifidation of regression problems. A
systematic understanding of dictionary learning and eelamodels (both supervised and unsuper-
vised) can help bridge this gap. Moreover, the applicatamsctionary learning in other areas such
as signal processing and coding make these results of brivéeleest beyond machine learning.

We believe that our work suggests several avenues for fudésearch. We focus on the unsu-
pervised setting in this paper, but extensions to supehdsdting would be interesting for future
work. Our theory also suggests room for strengthening tesolagtep with further constraints on
the global structure of the iteratés(¢), which might lead to better recovery properties with milder
assumptions. Our simulations hint at the possibility of #dsesample complexity, at least in cer-
tain regimes of parameters. Understanding these issuegllbas others such as noise robustness
remain important questions for further research in thia.are
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