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Abstract

A novel formulation for optimal sensor selection and in-network fusion for distributed infer-
ence known as the prize-collecting data fusion (PCDF) is proposed in terms of optimal tradeoff
between the costs of aggregating the selected set of sensor measurements and the resulting
inference performance at the fusion center. For i.i.d. measurements, PCDF reduces to the
prize-collecting Steiner tree (PCST) with the single-letter Kullback-Leibler divergence as the
penalty at each node, as the number of nodes goes to infinity. PCDF is then analyzed under a
correlation model specified by a Markov random field (MRF) with a given dependency graph.
For a special class of dependency graphs, a constrained version of the PCDF reduces to the
PCST on an augmented graph. In this case, an approximation algorithm is given with the ap-
proximation ratio depending only on the number of profitable cliques in the dependency graph.
Based on these results, two heuristics are proposed for node selection under general correlation
structure, and their performance is studied via simulations.

Keywords: Optimal Node Selection, Sensor Networks, In-network Aggregation, Detection,
Prize-Collecting Steiner Tree.

1 Introduction

Consider a sensor network deployed in an area taking measurements for distributed inference. Here,
a designated fusion center collects the sensor measurements and makes a final decision about the
underlying signal field. The classical works on this topic are concerned with optimal inference
rules [1], and the role of network constraints is not considered.

Sensor networks have many resource constraints, and it may not be feasible to route all the
sensor measurements for inference. It is then crucial for the fusion center to select a set of sen-
sor measurements based on the tradeoff between the routing costs, and the resulting inference
performance at the fusion center. Intuitively, it is more economical to select nearby sensors with
“informative” data for inference.

Efficient sensor selection for inference presents several challenges since optimization of cost-
performance tradeoff is highly non-separable, where the costs (such as energy) of routing measure-
ments and the resulting inference performance at the fusion center are intertwined in a complex
way. On the other hand, a brute force approach of searching over all possible sensor subsets for
selection is not feasible even for moderate-sized networks. Are there any heuristics for sensor se-
lection with efficient cost-performance tradeoff? Is it possible to provide approximation guarantees
for the heuristics with respect to the optimal solution? How do factors such as the correlation
model and node topology affect the efficiency of these heuristics? How do we aggregate1 data at
intermediate nodes in a cost-efficient manner, and yet provide guaranteed inference performance at
the fusion center? We address these issues in this paper.

1.1 Summary of Results

This paper considers selection of sensors to achieve optimal cost-performance tradeoff for inference.
The costs are incurred in routing and aggregating the selected subset of sensor measurements,
and the performance is in terms of the probability of error in inferring the correct hypothesis at
the fusion center, given the aggregated data. The contributions are three fold. First, we propose

1The terms aggregation and fusion are used interchangeably.
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a formulation for optimal sensor selection and in-network fusion known as the prize-collecting
data fusion (PCDF). Second, we prove its reduction to a known optimization problem for certain
correlation structures. Third, for general correlation, we propose two heuristics, and study their
performance through simulations.

When the sensor measurements are i.i.d. and the number of sensors goes to infinity, PCDF
reduces to an optimization problem known as the prize-collecting Steiner tree (PCST) [2]. It is
defined as the sub-tree rooted at a specified vertex (fusion center in our case) that minimizes
the sum of edge costs in the tree plus the penalties of the nodes not spanned by it. For PCDF
with i.i.d. data, the node penalties are uniform, and given by the single-letter Kullback-Leibler
divergence (KLd).

We then consider correlated sensor measurements via a Markov random field (MRF) model with
a given (undirected) dependency graph [3]. For a special class of dependency graphs, a constrained
form of PCDF asymptotically reduces to PCST on an augmented graph, where the augmenta-
tion involves adding new nodes and edges to account for increase in aggregation costs due to the
presence of correlation. In general, finding the constrained PCDF is NP-hard and we resort to ap-
proximations via the PCST reduction. The approximation ratio ρ of any polynomial-time algorithm
guarantees that its output is no worse than ρ times the optimal value. We give an approximation
algorithm where the approximation ratio depends only on the number of “profitable” cliques in the
dependency graph.

We then develop group selection heuristics for general correlation structures based on the above
approximation, viz., component selection and clique selection, and study their performance through
simulations. It is observed that the heuristics perform substantially better than the optimal selec-
tion scheme which routes the selected measurements to the fusion center without any aggregation
at the intermediate nodes. Hence, our approach of incorporating aggregation into the sensor selec-
tion formulation substantially reduces routing costs leading to efficient selection policies. We then
study the influence of node topology and observe that at sparse spatial dependencies, a clustered
node placement achieves better cost-performance tradeoff compared to a uniform placement. These
results have direct implications on designing good node placement strategies for cost-performance
tradeoff.

1.2 Related Work

Energy-efficient inference in sensor networks has been considered before for some special correlation
models (e.g., [4–6]). More relevant here is the notion of in-network aggregation, considered for spe-
cific function computation in [7]. However, the mechanisms to aggregate a subset of measurements
and selection of such a subset are not considered.

In [8,9], we consider minimum cost aggregation of all the sensor measurements under the Markov
random field model under the constraint of achieving optimal inference at the fusion center, but
we do not deal with the issue of sensor selection. In [10], we consider optimal node density for
inference leading to probabilistic sleeping strategies to meet the energy constraints. In contrast,
this work uses the approach of deterministic sensor selection to achieve energy efficiency.

Sensor selection algorithms have been considered in a variety of contexts, such as for control [11],
for target tracking [12], multimedia streams [13], fixed number selection [14], region selection [15],
for information maximization [16], in dynamical systems [17,18], and so on. However, to the best of
our knowledge, the problem of optimal node selection (e.g., see survey [19]) has not been considered
in conjunction with in-network fusion before. Indeed in single-hop networks, there is no need for
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data fusion. But most large networks are multi-hop, and routing costs are substantially reduced
through fusion at intermediate nodes, as seen in simulations in Section 6.

Many works on node selection assume perfect sensing of a region (e.g., [15]). In contrast, our
work explicitly models correlated imprecise measurements via a Markov random field, and is the
basis for selecting “informative” sensors for inference. Indeed, there is also the issue of accuracy
in learning the statistical model. Conceding this limitation, we aim to gain insights through our
model-based framework.

2 System Model & Problem Formulation

In this paper, we will consider various graphs: the dependency graphs specifying the correlation
structure of sensor measurements, the network graphs denoting feasible links for communication,
and the fusion digraphs denoting links used by a policy to route and aggregate data.

2.1 Measurements: Correlation & Inference Model

We assume that the measurements are drawn from a Markov random field (MRF). Let YV = [Yi, i ∈
V ]T denote the measurements in any set V . If YV is a MRF with dependency graph DG(V ), then
under the positivity condition, its joint pdf fV is given by the Hammersley-Clifford theorem [3],

− log fV (YV ; Υ) =
∑

c∈C

ψc(Yc), (1)

where C is the collection of (maximal) cliques2 in DG(V ) and the function ψc is known as the
normalized3 potential for clique c. Hence, {DG(V ), C, ψ} represents a MRF. For a discussion on
the use of MRF for spatial correlation, see [8].

We consider the binary hypothesis-testing problem with null hypothesis H0 and alternative H1.
Under either hypothesis, we assume that the measurements are drawn from distinct MRFs,

H0 : {DG0(V ), C0, ψ0} ; H1 : {DG1(V ), C1, ψ1}. (2)

In order to quantify inference performance, we consider the Neyman-Pearson criterion [1], where
for a fixed false-alarm probability (type-I error), the detector at the fusion center is optimal in
terms of the type-II error probability PM .

2.2 Network and Cost Model

The network is connected via a network graph of feasible links with given routing costs. For
optimization of costs, we only need to work with the metric closure4 of the network graph, denoted
by Gn(V ), and the metric cost for each node pair (i, j), denoted by C(i, j). For any graph G,
let C(G) denote the total metric cost of using all its links. Communication between the nodes is
perfect and scheduled so as to avoid interference.

2A clique refers to a maximal clique unless otherwise mentioned.
3In general, finding the normalization constant is NP-hard, but can be carried out at the fusion center without

sensor data.
4The metric closure on graph G, is defined as the complete graph where the cost of each edge (i, j) in the metric

closure is the cost of the shortest path between i and j in G.

4



Nodes communicate in the form of packets. Each packet contains bits for at most one (quantized)
real variable and other overhead bits. The quantization error is assumed to be small and ignored
here. A node can function as an aggregator (combines incoming packets with its own measurement)
or a router (forwarding packets without combination). An aggregation scheme consists of the
transmitter-receiver pairs with the respective links used which form the fusion digraph Gf , the
transmission schedule, and the aggregation algorithm.

2.3 Problem Formulation

The goal of this paper is to select an optimal sensor subset5 Vs ⊂ V , given the entire set V , and to
incorporate in-network aggregation of the measurements YVs

before delivery to the fusion center
v0 ∈ V . It is not possible to quantify inference performance under arbitrary aggregation. Hence,
we limit ourselves to aggregation schemes which guarantee the same inference performance as the
centralized scheme, i.e., as if the fusion center had direct access to the selected measurements YVs

.
In this case, there is no performance loss due to aggregation at the intermediate nodes. In statistical
theory, a sufficient statistic is a well-behaved function of the data, which is as informative as the
raw data for inference [20]. Hence, a scheme which computes and delivers a sufficient statistic
results in no loss of inference performance due to aggregation.

We assume that the optimal Neyman-Pearson (NP) detector is used at the fusion center, and
that the inference performance is measured by the NP type-II error probability PM . We are thus
interested in subset selection Vs ⊂ V and design of aggregation scheme Γ(Vs) delivering a sufficient
statistic of its measurements YVs

such that optimal linear tradeoff is achieved between the total
routing costs C(Γ(Vs)) and a penalty function π, based on the NP type-II error PM (Vs),

opt(V,C, γπ):= min
Vs⊂V,Γ(Vs)

[

C(Γ(Vs)) + γπ(V \Vs)
]

, γ > 0 (3)

where V \Vs:={i : i ∈ V, i /∈ Vs} and π is given by

π(V \Vs):= log
PM (Vs)

PM (V )
> 0, ∀Vs ⊂ V. (4)

When we select all the sensors (Vs = V ), (4) evaluates to zero, and there is no loss in performance
since no measurement is dropped. On the other hand, for a proper subset (Vs ( V ), we incur a
loss in performance and hence, pay a positive penalty in terms of the fraction of increase in error
probability due to non-selection of nodes in V \Vs. Since we collect prizes or penalties for nodes
not selected, and incorporate fusion over the selected data, we will henceforth refer to the optimal
solution in (3) as the prize-collecting data fusion (PCDF) scheme.

The parameter γ is known as the tradeoff factor, and is used to adjust the relative importance
of cost and performance. Note that the optimization in (3) is the Lagrangian dual for the problem
of finding the optimal fusion scheme under a constraint on the inference performance or vice versa.
Hence, once we have an algorithm to find the (approximate) solution to (3), we can use it in the
constrained optimization problems. This aspect is however not studied in this paper, and we will
limit to finding solutions to (3). Denote the objective in (3) as

5The unselected nodes can still function as routers and forward data.
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obj(Vs,Γ(Vs);V,C, γπ):=
[

C(Γ(Vs)) + γπ(V \Vs)
]

, (5)

and the optimal node subset and fusion scheme by

[V∗,Γ∗(V∗)]:= arg min
Vs⊂V,Γ(Vs)

obj(V,C, γπ). (6)

When the tradeoff factor is sufficiently large (γ →∞), the optimal tradeoff problem in (3) reduces
to minimum cost fusion, considered in [9], where optimal inference is required and hence, all the
nodes are selected, and the goal is to find the fusion scheme which minimizes the total routing
costs while ensuring delivery of a sufficient statistic to the fusion center. When the tradeoff factor
is sufficiently small (γ → 0), none of the nodes are selected.

lim
γ→0

V∗(V,C, γπ)→ ∅, lim
γ→∞

V∗(V,C, γπ)→ V.

2.4 Preliminary Observations & Results

For binary hypothesis testing, the log-likelihood ratio (LLR) is minimally sufficient and represents
maximum reduction in dimensionality of raw data. It is given by

LLR(YVs
):= log

fVs
(YVs

;H0)

fVs
(YVs

;H1)
, (7)

where fVs
(YVs

;Hj) is the pdf of the measurements YVs
under hypothesis Hj . Hence, the optimal

aggregation scheme in (3), for a given node subset Vs, is a scheme Γ(Vs) computing and delivering
LLR(Vs) to the fusion center with minimum total cost C(Γ(Vs)).

For the penalty function in (4), in general, the error probability PM does not have a closed form,
and hence, an analytical solution to (3) is not tractable. We focus on the large-network scenario,
where the error probability PM can be approximated by the error exponent [20]. When the type-II
error PM (V ) decays exponentially with the sample size |V |, for a fixed type-I error, the NP error
exponent is given by

D:=− lim
|V |→∞

1

|V |
logPM (V ). (8)

We will see that we can replace the error probability PM in (4) by an expression based on the error
exponent in (8), and yet achieve optimality with respect to (3), as the number of nodes goes to
infinity.

3 IID Measurements

We now consider the case when all the sensor measurements are i.i.d. under each hypothesis,

Yi
i.i.d.
∼ f(Y ;Hj), for j = 0, 1. We first solve a different optimization problem based on (8) and then

prove its asymptotic convergence to (3).
For i.i.d. data, from Stein’s Lemma [20, Thm. 12.8.1], the exponent D in (8) is the Kullback-

Leibler divergence (KLd)
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q1 = LLR(Y1) q2 = LLR(Y2)

q4 = LLR(Y4)

q3 = LLR(Y3) +
2
∑

i=1

qi

1 2

3

4

Fusion Center

Selected Node

Figure 1: Aggregation of i.i.d. measurements along the PCST.

D = D(f(Y1;H0)||f(Y1;H1)):=

∫

y

log
f(y;H0)

f(y;H1)
f(y;H0)dy

We now consider a new penalty function which assigns uniform penalty to each unselected node
equal to the KLd D. Hence, if Vs is the selected subset, the penalty is given by

πiid(V \Vs):=[|V | − |Vs|]D, (9)

First, we establish that the optimal solution under the penalty function π in (4) is the same as the
optimal solution with penalty πiid, as the number of nodes goes to infinity.

Theorem 1 (Asymptotic optimality of PCST for i.i.d. data) Under bounded link costs, we
have

lim
|V |→∞

opt(V,C, γπ)

opt(V,C, γπiid)
→ 1, ∀γ > 0. (10)

Proof: See Appendix A. 2

Hence, it suffices to solve the optimization with πiid instead of π for asymptotic networks, given
by

opt(V,C, γπiid):= min
Vs⊂V,Γ(Vs)

[

C(Γ(Vs)) + γ[|V | − |Vs|]D
]

. (11)

In order to incorporate in-network aggregation in (11), we need an explicit form for LLR(YVs
) since

it needs to be computed by the fusion scheme. For i.i.d. data, it is

LLR(YVs
) =

∑

i∈Vs

log
f(Yi;H0)

f(Yi;H1)
, ∀Vs ⊂ V, (12)

which is a simple sum function in the selected nodes. In the theorem below, we prove that the
optimal solution to (11) is the prize-collecting Steiner tree (PCST).

Theorem 2 (Selection & aggregation of i.i.d. data) The optimal solution to (11) is aggrega-
tion along the prize-collecting Steiner tree rooted at the fusion center v0, and edges directed towards
v0: each node i in the PCST computes and transmits qi to its immediate successor, given by
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Figure 2: In-network Aggregation for inference: computation of the log-likelihood ratio LLR(YVs
)

of a given node subset Vs.

qi = LLR(Yi) +
∑

j∈Np(i)

qj , (13)

where Np(i) is the set of immediate predecessors of i in the directed PCST.

Proof: The LLR sum function in (12) over a selected subset Vs can be computed along the edges
of a tree spanning Vs, rooted at and directed towards the fusion center, and Vs should be selected
so as to achieve optimality in (11). By definition, it is given by the PCST. 2

Hence, the optimal aggregation for i.i.d. data is along the directed PCST. A schematic of the
scheme is shown in Fig.1. In general, finding the PCST is NP-hard. In [2], an approximation
algorithm for the PCST with approximation ratio 2− (|V | − 1)−1 for any node set V is proposed,
and is referred to as the Goemans-Williamson (GW) algorithm.

Theorem 2 establishes the optimality of PCST for the penalty function πiid in (9). From
Theorem 1, the PCST is also optimal for the penalty function π in (4), when the network size
goes to infinity. Hence, the PCDF in (3) reduces to aggregation along the PCST for i.i.d data, as
the network size goes to infinity, and the GW-algorithm approximates the PCST with a proven
guarantee of 2− (|V | − 1)−1.

4 Correlated Measurements: MRF Model

We now generalize the results to the case when the measurements are correlated according to a
Markov random field model, described in Section 2.1. Several new challenges arise here. First, the
LLR is no longer a simple sum function as in the i.i.d. case in (12). Hence, the structure of fusion
schemes computing the LLR is not clear. Second, the error exponent D is no longer the single-letter
KLd as for i.i.d data, and hence, the exponent-based penalty may not be separable in the nodes.
Third, nodes cannot be assigned uniform penalties as in the i.i.d. case, since they affect inference
performance differently in the presence of correlation.

With the above challenges, it is not tractable to solve the PCDF problem, defined in (3).
Instead, we solve (3) under an additional constraint that the subsets Vs considered are only those
that span a sub-collection of cliques of the dependency graph Cs ⊂ C, and is referred to as the
constrained PCDF,
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opt clique(V,C, γπ):=min
Vs⊂Cs⊂C

Γ(Vs)

[

C(Γ(Vs)) + γπ(V \Vs)
]

. (14)

In other words, the selection policy is coarser since it selects or rejects cliques of nodes instead
of individual ones. Since we are ruling out certain subsets for selection, we cannot guarantee
optimality with respect to (3).

4.1 In-network Aggregation of LLR

In order to design a fusion scheme for computing the LLR, we need its explicit characterization. For
testing of MRFs in (2), define the joint dependency graph, DG(V ):=DG0(V )∪DG1(V ). Henceforth,
we only work with DG(V ). Using the MRF form in (1), the LLR of the measurements YV in (7)
is based on the cliques in DG(V )

LLR(YV ) := log
fV (YV ;H0)

fV (YV ;H1)
,

=
∑

a∈C0

ψ1,a(Ya)−
∑

b∈C1

ψ0,b(Yb) (15)

:=
∑

c∈C

φc(Yc), C:=C0 ∪ C1. (16)

Comparing the above form with that for i.i.d data in (12), we see that correlation increases the
complexity of the LLR.

For any subset Vs ⊂ V , its marginal LLR can also be expressed based on the clique set C′ of its
dependency graph DG′(Vs)

LLR(YVs
) =

∑

c∈C′

φ′c(Yc), (17)

where DG′(Vs):=DG′
0(Vs) ∪ DG′

1(Vs), and DG′
j(Vs) is the dependency graph of the marginal pdf

fVs
(YVs

;Hj), for j = 0, 1. In general, DG′(Vs) is not a subgraph of DG(V ) and C′ is not contained
in C. Hence, the structure of the marginal LLR and its fusion scheme change with the selected set
Vs.

We now describe the structure of fusion schemes computing the LLR of a given subset Vs. See
Fig.2. The issue of optimal selection of Vs will be considered later. Given the dependency graph
DG′(Vs), the computation is in two stages. First, the data Yc are forwarded from all the members
of clique c ∈ C′ to compute its potential φ′c(Yc) at an assigned processor, denoted by Proc(c). The
set of links used for such data forwarding in all the cliques form the forwarding graph (FG).

In the second stage of LLR computation, all the clique potentials are summed up and delivered
to the fusion center, using a set of links referred to as the aggregation subgraph (AG). The tuple with
the forwarding and aggregation subgraphs of a fusion scheme is the fusion digraph, Gf :={FG,AG},
since it is the complete set of links used by the fusion scheme. The total routing costs of the fusion
scheme is

C(Gf ) = C(FG) + C(AG). (18)
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Figure 3: Illustration of Clique Selection and Data Fusion via PCST Reduction for Binary Cliques.

For finding the constrained PCDF in (14), we thus need to find a fusion scheme which minimizes
the sum of routing costs in the two stages of LLR computation.

4.2 Error Exponent & Penalty Function

Along the lines of our approach for i.i.d. data, in the constrained PCDF problem in (14), we replace
the error-probability based penalty π with the error exponent D for MRF hypothesis testing.

We now provide results for the error exponent D, which is then used to define a penalty function
πclq in (20) approximating the function π in (4), based on the inference error probability.

Theorem 3 (Error Exponent for MRF) When the sequence of normalized log-likelihood ratio
variables is uniformly integrable and converges in probability under the null hypothesis H0, the error
exponent in (8) is

D = p lim
n→∞

1

n

∑

c∈C

E(φc(Yc)|V ;H0), (19)

where φc is the potential function for clique c, C is the MRF clique collection in (16) and E is the
expectation under H0.

Proof: We use the form of LLR in (16). See Appendix B. 2

Hence, the exponent is given by the limit of the normalized sum of functions over the dependency
cliques. We define a new penalty function πclq based on the error exponent to be used in the
optimization in (14), where the unselected cliques are assigned penalty

πclq(C\Cs):=
∑

c∈C\Cs

(

E(φc(Yc)|V ;H0)
)+
, (20)

and use it instead of the original penalty function π in (4) based on the error probability.

4.3 Special Case of MRF: Disjoint Cliques

We now provide approximation guarantees and convergence results for (14) under a special class
of dependency graphs. This in turn inspires the development of a general class of heuristics for
any dependency graph in Section 5. We consider the special case when all the cliques in the
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joint dependency graph DG(V ) are disjoint. This can occur for instance, when nodes are placed
according to a cluster process and the dependency graph is given by a disk graph. See Section 6.
Here, the form of the LLR in (17) and the exponent in (19) are simplified further.

For disjoint cliques, the dependency graph DG′(Vs) is a subgraph of DG(V ), for any node subset
Vs spanning a sub-collection of cliques Cs ⊂ C, and hence,

LLR(YVs
) =

∑

c∈Cs

φc(Yc). (21)

Hence, it is simpler to design fusion schemes in this case since the dependency structure does not
change for different nodes subsets, as long as the nodes span a sub-collection of cliques.

For disjoint cliques, the penalty function for each clique in (20) simplifies to the KLd of mea-
surements in clique c ∈ C

πclq(c) = D(fc(Yc;H0)||fc(Yc;H1)):=Dc. (22)

Hence, if nodes in a clique c is not selected, then a penalty equal to its KLd Dc is paid.
We now prove the asymptotic optimality of using the exponent-based penalty function πclq in

(22), instead of the original penalty function π in (4) in (14).

Theorem 4 (Asymptotic Optimality) When the number of cliques grows with network size
(|C| → ∞, as |V | → ∞), and the link costs are bounded, we have

lim
|V |→∞

opt clique(V,C, γπ)

opt clique(V,C, γπclq)
= 1, ∀γ > 0. (23)

Proof: Along the lines of Theorem 1. See C. 2

Hence, using the penalty function πclq in (22) instead of π is suitable for networks with large
number of cliques. An example where this does not occur is when the dependency graph is complete,
and has a single clique. We therefor need a sparse dependency graph to guarantee the asymptotic
convergence of the constrained PCDF in (14) to the optimal solution under penalty πclq. Along the
lines of our approach for the i.i.d. case, we now prove that under πclq, the optimal solution reduces
to a PCST.

Theorem 5 (PCST Reduction) opt clique(V,C, γπclq) has an approximation-ratio preserving
PCST reduction.

Proof: By simplifying an integer program. See Appendix D. 2

The above result implies that any approximation algorithm for the PCST can be transformed
to an approximation for opt clique(V,C, γπclq), with its approximation ratio preserved. One such
instance, called the approximate prize-collecting data fusion (Approx PCDF), is given in Fig.4. It
builds an approximate PCST on an augmented graph using the GW-algorithm [2].

The augmented graph is given by the function Map in Fig.5, where for each non-trivial clique
c (size greater than one) of the dependency graph, it adds a virtual node vc and connects it to the
nodes v ∈ V . The costs of new edges reflect the cost of forwarding raw data to candidate processors
to compute the clique potentials in the first stage of LLR computation, which is not needed for
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i.i.d. data. Hence, the routing costs are increased in the presence of correlation due to additional
complexity of the LLR.

The penalty of each virtual node vc is πclq(c) in (22) and the penalties of all nodes v ∈ V are set
to zero. After building the approximate PCST on the augmented graph, the function RevMap in
Fig.6 maps it to a valid output, viz., the set of selected cliques and the fusion scheme to compute
its LLR. An example of the PCST reduction is shown in Fig.3.

As in the i.i.d. case, an approximate PCST is built on the augmented graph using the
GW-algorithm [2]. Since the augmented graph has |V | + |Cnt| number of nodes, where Cnt is
the set of non-trivial cliques, the approximation ratio of Approx PCDF(Map) with respect to
opt clique(V,C, γπclq) is 2− (|V |+ |Cnt| − 1)−1.

We now improve its approximation ratio based on some simple observations regarding the GW-
algorithm. Define the collection of profitable cliques Cp ⊂ C as those generating a net “profit” after
reducing their scaled KLd by the costs of raw-data routing to any processor

Cp :={c : c ∈ C, |c| = 1 or |c| > 1 and

γDc ≥ min
i∈V

∑

vk⊂cj ,k 6=i

C(vi, vk)}, (24)

and let Map′ be the modified version of Map which only adds virtual nodes for non-trivial profitable
cliques, i.e., c ∈ Cp, |c| > 1, instead of adding for all non-trivial cliques, c ∈ Cnt, as done by Map.
Below, we give the improved approximation ratio.

Theorem 6 (Improved Approx. Ratio) On using the Map′ function, the approximation ratio
for Approx PCDF with respect to opt clique(V,C, γπclq) is

ρ(Approx PCDF(Map′)) = 2−
1

max(|Cp| − I(v0 ∈ Cp), 1)
.

Proof: Only profitable cliques can be selected in the optimal solution. See Appendix E. 2

Hence, the approximation ratio for Approx PCDF(Map′) depends only on the number of prof-
itable cliques |Cp|, which may be substantially smaller than the size of the augmented graph
|V | + |Cnt| leading to improved approximation guarantees. In fact, when there are no profitable
cliques (Cp = ∅), the algorithm outputs the optimal solution (ρ = 1) of not selecting any of the
nodes.

5 Node Selection Heuristics

The results in the previous section inspire the development of two heuristics for a general depen-
dency graph, viz., clique selection and component selection. The Approx PCDF algorithm in the
previous section, based on the PCST reduction, can be generalized as follows: form groups of nodes
according to some criterion as candidates for selection, and define a penalty function for not select-
ing each group. Apply the PCST reduction as before by augmenting the graph with virtual nodes
for each group. Using the RevMap, the output is a selected sub-collection of groups and a fusion
scheme which computes a sum function over the selected groups.
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Require: V = {v0, . . . , v|V |−1} nodes, v0= Fusion center,
M = {c0, . . . , c|M|−1}= Candidate node groups
Gn= Metric closure of network, C = Link costs
Πm = Penalty of group m, γ = tradeoff factor
{G′, Vm, π} ← Map(Gn;M, C,Π, γ)
PCST(G;C, π) = (Approx.) Prize-collecting Steiner tree on G using GW algorithm with cost C,
node penalty fn. π
DPCST = PCST(G′) directed towards v0
{Ms,Γ} ← RevMap(DPCST;Vm, V,M,Algo)
return {Ms,Γ}

Figure 4: Approx PCDF(Map,Algo): outputs selected groups Ms and fusion scheme Γ. For
Algo=Clique Selection, M = C is the clique set of DG(V ) and Π = πclq in (20). For
Algo=Component Selection,M is the set of components of DG(V ) and Π = π cmp in (25).

The desired output for cost-performance tradeoff is however not a fusion scheme for computing
a sum function, but for computing the marginal LLR of the selected nodes. As we discussed in
Section 4.2, the LLR structure (dependency graph) changes with the selected node set in general.
We now overcome this hurdle by grouping nodes in such a manner that the LLR of any selected
sub-collection of groups is indeed a sum function over those groups.

For general dependency graphs, such groups are given by the components of the dependency
graph, i.e., if all or none of the nodes belonging to each component of the graph are selected, then
the LLR of the selected subset is a simple sum function over the selected components

LLR(YVs
) =

∑

v⊂m,m∈M

LLR(Ym),

where m ∈ M is a component in the dependency graph. Moreover, we can define penalty for
each component by collecting the terms of the error exponent in (19) consisting of all the cliques
contained in it, given by

π cmp(m):=
∑

c⊂m,c∈C

E[φc(Yc);H0] = Dm, (25)

where Dm is the KLd of the component m, and the penalties of different components are additive.
We term such a policy considering different components of the dependency graph as candidates for
selection as the component selection heuristic.

Optimal cost-performance tradeoff is however not guaranteed for the component selection heuris-
tic since we may be severely limiting our choices of node subsets for selection. For instance, if the
graph has a single component, then the heuristic reduces to a binary decision of selecting all or
none of the nodes. We now propose another heuristic which may perform better in such instances.

As in the previous section, we consider the cliques of the dependency graph as the groups, i.e.,
candidates for selection, and the penalty function for each clique in (20). This is referred to as
the clique selection heuristic. However, as noted, the output fusion scheme is not guaranteed to
compute the marginal LLR of the selected node set which is a requirement for inference. In Fig.6,
we add additional lines from (17) to (26) to ensure that the marginal LLR is indeed computed.
For each new clique in the marginal dependency graph, not present in the dependency graph over
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1: function Map(Gn(V );M, C,Π, γ)
2: Nu(v;G) = Neighborhood of v in undirected G
3: G′ ← Gn, Vm ← ∅, n← |V |, π(v)← 0, ∀v ∈ V
4: for j ← 0 to |M| − 1 do ⊲ Let V andM be ordered
5: if |mj | > 1 then
6: Vm ← vn−1+j

7: Add new node vn−1+j to G′

8: Assign penalty γπ(vn−1+j)← γΠmj
,

9: for all vi ∈ V do
10: Add node vi to Nu(vn−1+j ;G

′)
11: C(vn−1+j , vi;G

′) ←
∑

vk⊂cj ,k 6=i
C(vi, vk;Gn)

12: end for
13: else
14: Vm ← vi, π(vi)← γΠmj

, vi ⊂ mj ⊲ 1-groups
15: end if
16: end for
17: return {G′, Vm, π}
18: end function

Figure 5: Map(Gn;M, C,Π, γ) adds nodes for each non-trivial group, and returns augmented graph
G′ with penalty π and group-representative set Vc.

all the nodes DG(V ), we ensure that its clique potential is computed by adding edges from its
members to a processor to the forwarding subgraph (FG) of the fusion scheme. However, since new
edges are added, routing costs increase, and we can no longer provide optimality results for the
clique selection heuristic for a general MRF, as we did in the previous section.

The component and clique selection policies represent group selection of nodes with aggregation
for efficient cost-performance tradeoff. The component selection heuristic can be viewed as coarse
selection or rejection of nodes as a full component, while the clique selection heuristic is more
fine-grained, depending on the graph. For graphs having very few components, and yet, a large
number of cliques, we expect the clique selection policy to have better cost-performance tradeoff
than component selection, since there are more candidates for selection. On the other hand, for
sparse graphs with large number of components, we expect the component selection policy to do
better, and this is validated by our simulations.

6 Numerical Analysis

6.1 Simulation Environment

We assume that the sensor measurements are Gaussian under either hypothesis with the same
covariance matrix

YV ∼ N (µi,ΣV ), under Hi, i = 0, 1. (26)

This scenario arises when the sensors measure a deterministic signal with additive (correlated)

14



Gaussian noise under each hypothesis. The KLd D and the type-II error probability PM have
closed forms for Gaussian variables [1, 20]. We fix µ0 = 0,µ1 = 0.1I and the type-I error α = 0.2.

In our setup, n (expected) number of nodes are distributed in a square. We consider two node
placement distributions: uniform and Matern cluster process6 [21]. See Fig.8. The routing cost
between any two nodes i and j for direct transmission is given by the power-weighted distance
|i, j|ν . We present the result when the set of feasible direct connections is the complete graph and
the path-loss ν = 2: similar trends were observed for any connected graph and ν ∈ [2, 4].

6.2 Results: IID Measurements

We first consider the case when all the measurements are i.i.d. conditioned on each hypothesis with
unit variance (ΣV = I). We compare the performance of our fusion scheme Approx PCDF in Fig.
4 with the following simple schemes: choosing all the nodes and conducting fusion along the MST,
choosing none of the nodes (paying penalty for all the nodes), and additionally, optimal selection
with no aggregation, i.e., routing all the selected data to the fusion center via the shortest path
routes (SPR). It is given by the set of “profitable” nodes

V SPR

∗ (V,C, γπiid) = {i : i ∈ V, γD > C(i, v0)}, (27)

where C is the cost of shortest path. In Fig.7a, we find that the tradeoff function obj in (5) for
Approx PCDF is significantly better than those for the other schemes. Hence, incorporating fusion
into cost-performance tradeoff significantly reduces the costs and achieves better tradeoff.

Fig.7b shows that more nodes are selected by Approx PCDF as the tradeoff factor γ increases,
since the penalty is given by γπ. In Fig.7c, we plot the average (per-node) routing cost for ag-
gregation of selected measurements versus the resulting error probability for Approx PCDF under
different γ. We see that the exponent-based approximation e−nD is close to the actual error prob-
ability PM .

6.3 Results: Correlated Measurements

We employ the GMRF model in [22], where the dependency graph DG(V ) is a disk graph7 with
radius δ and the coefficients of the potential matrix AV :=Σ−1

V are given by

AV (i, j) =



























1−
∑

k:(i,k)∈DG(V )

A(i, k), i = j,

−2(1−
|i, j|

δ
), j 6= i,dist(i, j) ≤ δ,

0, o.w. (28)

We find that the positive definiteness is ensured in the above model since A is diagonally dominant.
For Gaussian measurements, the maximum clique size is two and higher order clique potentials are
zero [8]. Hence, the clique selection heuristic in Fig.4 reduces to selection of the dependency edges,
and is called the edge selection policy.

6Here, a parent Poisson process first generates points. A child Poisson process then generates nodes in a disc
around each point of the parent process.

7A disk graph has edges between nodes within δ inter-node distance.

15



We find that for the above model, the penalty for the entire node set given by the KLd DV does
not change with the disc radius δ or the node placement. However, the configuration of cliques and
their KLd indeed depend on these factors and influence the nature of selected set.

In Fig.9a, we compare the component and edge selection heuristics under uniform placement.
We fix the disk radius δ = 1.2 and here, the disk graph is connected (single component). We expect
the edge selection heuristic to perform better since it has more choices here when compared to
component selection, which has to make a binary choice whether to select all or none of the nodes.
We find that for γ shown in the figure, this indeed is the case; the edge selection heuristic performs
better and selects some nodes, while the component selection heuristic selects none of the nodes
thereby incurring high penalty in terms of error probability.

In Fig.9b and Fig.9c, we study the influence of node placement on our heuristics, and consider
uniform and Matern cluster process with component selection heuristic. We observe that at low
values of δ, the clustered process is more efficient; here, more nodes are chosen, and the tradeoff
function obj is lower. However, as δ increases, the two processes have nearly the same performance.
As in the i.i.d. case, the exponent-based penalty π cmp is close to π, based on the error probability
in all the instances.

We can provide an intuitive explanation for the above behavior. At low dependency (small values
of the disk radius δ), clustering the nodes is more efficient than uniform placement since it leads
to significantly smaller number of components, thereby providing more choices to the component
selection heuristic. Moreover, the routing costs within the components are also significantly reduced
upon clustering since nodes are nearer, and hence, more nodes are selected leading to improved
tradeoff. However, as δ increases, there are fewer and larger components, leading to increased
routing costs and fewer choices for selection. Hence, the cluster process is a good node-placement
strategy for achieving efficient cost-performance tradeoff at sparse spatial dependencies, and our
heuristic has good performance in this regime.

7 Conclusion

In this paper, we considered optimal node selection for tradeoff between routing costs and inference
performance. We explicitly incorporated the effect of correlation between the sensor measurements
via the dependency graph of a Markov random field model and considered in-network aggregation
of measurements to reduce routing costs. We provided theoretical and numerical results to show
the efficiency of our schemes for node selection and data aggregation.

There are many future directions to pursue such as the development of better algorithms. We
have only considered offline and centralized sensor selection and extension to local selection and
coordination is of interest. The effect of quantization and scheduling warrants investigation.

Acknowledgment

The authors thank Prof. A. Ephremides and Prof. D.P. Williamson for helpful comments.

16



A Proof of Theorem 1

It is easy to see that |V∗(V,C, γπ′′)| is monotonic in the tradeoff factor γ > 0, for both penalty
functions π′′ = π, πiid in (4) and (10). Hence, ∃γ1 such that ∀γ ≥ γ1, we have

lim
|V |→∞

|V∗(V,C, γπ
′′)|

|V |
= 1,

for both functions π′′ = π, πiid. The actual value of γ1 indeed depends on the system parameters.
For γ ≥ γ1, the average penalty goes to zero for both functions π′′ = π, πiid since almost all nodes
are selected and all edge costs to be bounded. Hence,

lim
|V |→∞

1

|V |
opt(V,C, γπ′′) = lim

|V |→∞

1

|V |
C(Γ∗(V∗(V,C, π

′′))) = lim
|V |→∞

1

|V |
C(Γ∗(V )),

since each edge cost is assumed bounded. Hence, we have for

lim
|V |→∞

opt(V,C, γπ)

opt(V,C, γπiid)
= 1, ∀γ > γ1 > 0.

Now for a fixed m < 1, consider γ ≤ γ2(m) such that

lim sup
|V |→∞

|V∗(V,C, γπ
′′|)

|V |
= m < 1, π′′ = π, πiid.

Hence, we limit our search over a collection of sets Am:={Vs : |Vs|
|V | ≤ m} for the optimal solution

opt(V,C, γπ′′) for both π′′ = π, πiid in this case. For i.i.d. measurements, from the existence of
exponent we have

[|V | − |Vs|]D − ǫ ≤ log
PM (Vs)

PM (V )
≤ [|V | − |Vs|]D + ǫ, (29)

Define new penalty functions

π±(V \Vs):=[|V | − |Vs|]
(

D ±
δ

|V |

)

, ∀Vs ∈ A

where δ(m):= lim sup
|V |→∞,Vs∈Am

ǫ|V |
|V |−|Vs|

= ǫ
1−m <∞.

For the same edge costs, a uniformly smaller penalty function for each node subset results in a
lower value of the optimal solution. Hence, we have

opt(V,C, π−) ≤ opt(V,C, π′′) ≤ opt(V,C, π+),

for π′′ = π, πiid. We now claim that if all the edge costs are unique and satisfy Ce 6= γD, then for
some n0

opt(V,C, π−) = opt(V,C, π+), ∀|V | > n0. (30)
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Note that if we substitute the penalty function π+ with π−, we uniformly reduce the node
penalties by 2δ

n , where n = |V |. This implies that some nodes from the optimal node set with
penalty function π+ (abbreviated as V +

∗ ) may be potentially removed. We claim that none of
the nodes are removed for all n > n0, for some n0 when the edge costs are all unique and not
equal to node penalty. In this case, we can always find a small perturbation of the node penalty
without changing the optimal solution. For example, consider a leaf node in V +

∗ , from cardinality
one test [23], if its edge Ce > γ(D − δ

n), then it cannot be in V −
∗ . But since it is in V +

∗ , we have

Ce ≤ γ(D +
δ

n
).

Since we have assumed that Ce 6= γD, we can find some n0 such that for all n > n0

Ce ≤ γ(D ±
δ

n
).

Hence, the leaf nodes are the same in V −
∗ and V +

∗ for n > n0. Similarly, we can apply general
cardinality tests in [23] such that for large n, the vertices in V +

∗ are not eliminated. Even in the
case when some of the edge costs and node penalties are non-unique, the change in the objective
value goes to zero asymptotically. Therefore,

lim
|V |→∞

opt(V,C, π−)

opt(V,C, π+)
→ 1, ∀γ ≤ γ2(m),m < 1.

By sandwich theorem, we have

lim
|V |→∞

opt(V,C, π)

opt(V,C, πiid)
→ 1, ∀γ ≤ γ2(m),m < 1.

Note that when m → 1, γ2(m) → γ1, and hence, we can make the gap between γ1 and γ2(m)
arbitrarily small.

B Proof of Theorem 3

When the sequence of normalized LLR converges in probability under null hypothesis8 , the NP
type-II error exponent under a fixed type-I error bound is [25, Theorem 1]

D= p lim
|V |→∞

1

|V |
LLR(YV ), YV ∼ H0, (31)

= p lim
|V |→∞

1

|V |
E[LLR(YV );H0], (32)

where p lim denotes convergence in probability. The reduction from (31) to (32) holds when the
sequence of the normalized LLR variables is uniformly integrable [24, (16.21)]. Using the form of
LLR for a MRF in (17),

E[LLR(YV );H0] =
∑

c∈C

E[φc(Yc);H0]. (33)

8Random variables Xn converge in probability to X, if limn P[|Xn −X| ≥ ǫ] = 0, for each positive ǫ. [24, p. 268].
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C Proof of Theorem 4

As in proof of Theorem 2, for a sequence of node sets V with clique collection C and another
sequence of node subsets Vs ( V with sub-collection Cs ( C, when lim sup|V |→∞

|Cs|
|C| = 1, the result

holds as in the i.i.d. case.
Assume that lim sup|V |→∞

|Cs|
|C| = m < 1. From Theorem 3,

∑

c∈C\Cs

Dc − ǫ ≤ log
PM (Vs)

PM (V )
≤

∑

c∈C\Cs

Dc − ǫ,

for some ǫ > 0. Define new penalty functions

π±(C\Cs):=
∑

c∈C\Cs

Dc ±
δ

|C|
,

where δ:= ǫ
1−m is finite since m < 1.

For the same edge costs, a uniformly smaller penalty function for each node subset results in a
lower value of the optimal solution. Hence, we have

opt clique(V,C, π−) ≤ opt clique(V,C, π′′) ≤ opt clique(V,C, π+), (34)

for π′′ = π, π cmp. Since the number of cliques grows as the number of nodes, δ
|C| → 0 as |V | → ∞

and π− and π+ can be made close to one another. On lines of the proof of Theorem 2, we can show
that

lim
|V |→∞

opt clique(V,C, π−)

opt clique(V,C, π+)
→ 1.

By sandwich theorem, we have

lim
|V |→∞

opt clique(V,C, π)

opt clique(V,C, π cmp)
→ 1.

D Proof of Theorem 5

We now write a 0-1 integer program whose optimal solution provides the optimal clique selection
and fusion scheme in (11) for computing its marginal LLR and delivering it to the fusion center v0.

As explained in [8], we can map any valid fusion digraph Gf = {FG,AG} and the processor
assignment mapping Proc to variables y and z, defined as

z(j, c):=I[Proc(c) == j], y(i, j):=I[< i, j >∈ AG],

where I is the indicator function and, the total routing costs of the fusion digraph in (19) can be
expressed as,

C(Gf ) =
1

2

∑

i,j∈V

[I(
∑

c:i⊂c

z(j, c) ≥ 1) + y(i, j)]C(i, j).
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We now need to incorporate the inference performance into the integer program. From (11), it
is equivalent to imposing penalties for not selecting a set of cliques X ⊂ C for processing and
data fusion. This can happen in two ways, viz., the clique may not be assigned a processor or the
computed clique potential may not be aggregated and delivered to the fusion center. Hence, (11)
is equivalent to the following integer program:

min
y,z,u

1

2

∑

i,j∈V

[I(
∑

c:i⊂c

z(j, c) ≥ 1) + y(i, j)]C(i, j)

+
∑

X⊂C

u(X)π(X) (IP-1), (35)

s.t. let Proc:={j : z(j, c) = 1, for j ∈ V, c ∈ C}, (36)
∑

c:c∈S,j∈V

z(j, c) +
∑

X:X⊃S

u(X) ≥ 1,∀S ⊂ C, (37)

∑

i/∈S,j∈S

y(i, j) +
∑

X:X⊃A
A={c:Proc(c)∈S}

u(X) ≥ 1,∀S ⊂ V, S ∩ Proc 6= ∅, (38)

y, z,u ∈ {0, 1}, (39)

where π(X):=γ
∑

c∈X Dc.
For the case of clique selection, we have

∑

i,j∈V

I(
∑

c:i⊂c

z∗(j, c) ≥ 1)C(i, j) =
∑

i,j∈V

∑

c:i⊂c

z∗(j, c)C(i, j),

=
∑

c∈C
|c|>1

∑

i⊂c,j∈V

z∗(j, c)C(i, j),

where the two equalities hold since there is a unique clique c containing node i, since c is a clique.
Adding the constraint that |c| > 1 does not affect the optimal solution. Hence, we have the
equivalent IP,

min
y,z,u

1

2
[

∑

c∈C,|c|>1

∑

i⊂c,j∈V

z(j, c)C(i, j) +
∑

i,j∈V

y(i, j)C(i, j)]

+
∑

X⊂C

u(X)π(X) (IP-2) (40)

We can now add new nodes vc and define new edge costs as

C(vc, j):=
∑

i⊂c

C(i, j), ∀j ⊂ c,

and the new penalties are π′

π′(X) =
∑

c:vc∈Xor |c|=1,i∈X,i⊂c

γDc, ∀X ⊂ V ∪ V ′

20



Hence, we have

min
y,z,u

1

2

[

∑

vc∈V ′,j∈V

z(j, c)C(vc, j) +
∑

i,j∈V

y(i, j)C(i, j)
]

+
∑

X⊂V ∪V ′

π′(X)u(X) (IP-3), (41)

s.t. let Proc:={j : z(j, c) = 1, for j ∈ V, vc ∈ V
′},

∑

c:vc∈S,j∈V

z(j, c) +
∑

X:X⊃S

u(X) ≥ 1,∀S ⊂ V ∪ V ′,

∑

i/∈S,j∈S

y(i, j) +
∑

X:X⊃S

u(X) ≥ 1,∀S ⊂ V ∪ V ′, S ∩ Proc 6= ∅,

y, z,u ∈ {0, 1},

where the constraints are redefined since the penalty π′ is defined over the entire set V ∪V ′. In the
final step, we z and y as variables x and this turns out to be the IP for the PCST.

min
x,u

∑

i,j∈V ∪V ′

1

2
x(i, j)C(i, j) +

∑

X⊂V ∪V ′

π′(X)u(X), (IP-4)

s.t.
∑

i/∈S,j∈S

x(i, j) +
∑

X:X⊃S

u(X) ≥ 1,∀S ⊂ V ∪ V ′,

x,u ∈ {0, 1}.

E Proof of Theorem 6

We first show that the approximation factor of the GW-algorithm is only dependent on the number
of vertices with strictly positive penalty.

Lemma 1 (Approx. Factor of GW-Algorithm) Given node set V , root v0 and subset V ′ ⊂ V
with all nodes with non-zero penalty, the GW-algorithm for PCST in [2] has an approximation
factor

2−
1

max[|V ′| − I(v0 ∈ V ′), 1]
, (42)

where I is the indicator function.

Proof: The approximation factor is based on the upper bound on the number of active nodes in
any iteration of the algorithm in [2, Thm. 4.1]. Since only nodes in V ′ have non-zero penalties, the
number of active cliques is at most |V ′| in any iteration. Moreover, the root v0 is set inactive by
the algorithm and if v0 ∈ V

′, the number of active nodes is at most |V ′| − 1. 2
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Hence, for Tradeoff Approx, only the nodes corresponding to the cliques have non-zero penalties.
This implies that the approximation ratio is improved to

ρ(Tradeoff Approx(Map)) = 2− (|C| − I(v0 ∈ C))
−1, (43)

where the indicator function is over the event that the fusion center is a 1-clique.
We can further improve the approximation ratio by modifying the function Map by using the

result below about the optimal solution.

Lemma 2 (Profitable Components) In the optimal solution opt clique(V,C, πclq) only the cliques
in the sub-collection Cp ⊂ C are potentially selected, with Cp defined as

Cp :={c : c ∈ C, |c| = 1 or |c| > 1 and

γDc ≥ min
i∈V

∑

vk⊂cj ,k 6=i

C(vi, vk)}. (44)

Proof: First note that all the selected clique representative nodes are leaves in the PCST. This is
because if a zero-penalty node is a leaf in the PCST, then the cost is lowered by removing it. For a
clique c /∈ Cp, let vertex vc be its representative in the augmented network graph Map(Gn(V )) and
say it is spanned in PCST and connected to some node i. By construction of Map(Gc), i ⊂ c. But
the value of the objective function of the PCST can be lowered by removing the edge (vc, i), since
the penalty is less than any edge cost

γDc < C(vc, i), ∀ i ∈ V, c /∈ Cp.

Hence, vc /∈ PCST for c /∈ Cp. 2

The above lemma implies that only cliques generating a net “profit” after reducing their scaled
KL-distance by the costs of raw-data routing to the processor are candidates for optimal selection.
This implies that there is no need to add virtual nodes for non-profitable cliques in the augmented
graph and hence, approximation factor on using Map′ holds from Lemma 1 and 2.
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1: function RevMap(G′;Vc, V,M,Algo)
2: Ns(v;G), Np(v;G) = Imm. successor, predecessor
3: < i, j >= Directed edge from i to j
4: Initialize G← G′, n← |V |,Ms ← ∅
5: for all vj ∈ Vc with Ns(vj ;G

′) 6= ∅ do
6: if j > n− 1 then
7: k ← j − n+ 1,Ms ←Ms ∪mk

8: Proc(mk)← Ns(vj ;G
′), for mk ∈M,

9: Vj ← ck\Proc(mk), Delete < vj ,Proc(mk) > in G, add < Vj ,Proc(mk) >, mark
them

10: if Np(vj ;G) 6= ∅ then Replace < Np(vj), vj > in G with edges < Np(vj),Proc(mk) >
11: end if
12: else
13: Proc(ml)← vj , for vj ⊂ ml, Ms ←Ms ∪ml

14: end if
15: end for
16: FG← Marked edges of G, AG← G\FG
17: Retain only one edge in FG if there are parallel links
18: Let V (Proc) be set of all processors
19: Let Vs ← nodes in V spanning the groupsMs

20: if Algo=Clique Selection then
21: Let C′ be clique set of DG′(Vs)
22: for all c ∈ C′\Ms do
23: Proc(c)← arg min

i∈V(Proc)

∑

j:j⊂c
<j,i>/∈FG

C(i, j)

24: Add < j,Proc(c) >, j ⊂ c\Proc(c) to FG if not already present
25: end for
26: Ms ← C

′

27: end if
28: Γ← {Proc,FG,AG}
29: return {M′,Γ}
30: end function

Figure 6: RevMap(G;Vc, V,M) returns the selected groupsMs and maps tree G′ to fusion scheme
Γ with processor assignment Proc, forwarding subgraph FG and aggregation subgraph AG.
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