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Abstract

We consider the problem of high-dimensional Gaussian graphical model selection. We
identify a set of graphs for which an efficient estimation algorithm exists, and this algorithm
is based on thresholding of empirical conditional covariances. Under a set of transparent
conditions, we establish structural consistency (or sparsistency) for the proposed algorithm,
when the number of samples n = ω(J−2

min
log p), where p is the number of variables and

Jmin is the minimum (absolute) edge potential of the graphical model. The sufficient
conditions for sparsistency are based on the notion of walk-summability of the model and
the presence of sparse local vertex separators in the underlying graph. We also derive novel
non-asymptotic necessary conditions on the number of samples required for sparsistency.

Keywords: Gaussian graphical model selection, high-dimensional learning, local-separation
property, walk-summability, necessary conditions for model selection.

1. Introduction

Probabilistic graphical models offer a powerful formalism for representing high-dimensional
distributions succinctly. In an undirected graphical model, the conditional independence
relationships among the variables are represented in the form of an undirected graph. Such
models have found widespread applications in a variety of areas including computer vision,
bio-informatics, financial modeling and social networks. For instance, graphical models have
been employed for contextual object recognition to improve detection performance based
on object co-occurrences (Choi et al., 2010) and for modeling opinion formation in social
networks (Grabowski and Kosinski, 2006).
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Learning graphical models using its observed samples is an important task, and involves
both structure and parameter estimation. While there are many techniques for parameter
estimation (e.g., expectation maximization), structure estimation is arguably more chal-
lenging. High-dimensional structure estimation is NP-hard for general models (Karger and
Srebro, 2001; Bogdanov et al., 2008) and moreover, the number of samples available for
learning is typically much smaller than the number of dimensions (or variables).

The complexity of structure estimation depends crucially on the underlying graph struc-
ture. The seminal work of Chow and Liu (1968) established that structure estimation in
tree models reduces to a maximum weight spanning tree problem and is thus computa-
tionally efficient. However, a general characterization of graph families for which structure
estimation is tractable has so far been lacking. In this paper, we present such a characteri-
zation based on the so-called local separation property in graphs. It turns out that a wide
variety of (random) graphs satisfy this property (with probability tending to one) includ-
ing large girth graphs, the Erdős-Rényi random graphs (Bollobás, 1985) and the power-law
graphs (Chung and Lu, 2006), as well as graphs with short cycles such as the small-world
graphs (Watts and Strogatz, 1998) and other hybrid graphs (Chung and Lu, 2006, Ch. 12).

Successful structure estimation also relies on certain assumptions on the parameters of
the model, and these assumptions are tied to the specific algorithm employed. For instance,
for convex-relaxation approaches (Meinshausen and Buehlmann, 2006; Ravikumar et al.,
2008), the assumptions are based on certain incoherence conditions on the model, which are
hard to interpret as well as verify in general. In this paper, we present a set of transparent
conditions for Gaussian graphical model selection based on walk-sum analysis (Malioutov
et al., 2006). Walk-sum analysis has been previously employed to analyze the performance of
loopy belief propagation (LBP) and its variants in Gaussian graphical models. In this paper,
we demonstrate that walk-summability also turns out to be a natural criterion for efficient
structure estimation, thereby reinforcing its importance in characterizing the tractability of
Gaussian graphical models.

1.1 Summary of Results

Our main contributions in this work are threefold. We propose a simple local algorithm for
Gaussian graphical model selection, termed as conditional covariance threshold test (CCT)
based on a set of conditional covariance thresholding tests. Second, we derive sample
complexity results for our algorithm to achieve structural consistency (or sparsistency).
Third, we prove a novel non-asymptotic lower bound on the sample complexity required by
any learning algorithm to succeed. We now elaborate on these contributions.

Our structure learning procedure is known as the Conditional Covariance Test1 (CCT)
and is outlined in Algorithm 1. Let CCT(xn; ξn,p, η) be the output edge set from CCT

given n i.i.d. samples xn, a threshold ξn,p (that depends on both p and n) and a constant
η ∈ N, which is related to the local vertex separation property (described later). The condi-
tional covariance test proceeds as follows: one computes the empirical absolute conditional
covariances for each node pair (i, j) ∈ V 2 and finds the conditioning set which achieves

1. An analogous test is employed for Ising model selection Anandkumar et al. (2011b) based on conditional
mutual information. We later note that conditional mutual information test has slightly worse sample
complexity for learning Gaussian models.
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Algorithm 1 Algorithm CCT(xn; ξn,p, η) for structure learning using samples xn.

Initialize Ĝn
p = (V, ∅).

For each i, j ∈ V , if
min

S⊂V \{i,j}
|S|≤η

|Σ̂(i, j|S)| > ξn,p, (1)

then add (i, j) to Ĝn
p .

Output: Ĝn
p .

the minimum, over all subsets of cardinality at most η; if the minimum value exceeds the
threshold ξn,p, then the node pair is declared as an edge. See Algorithm 1 for details.

The computational complexity of the algorithm is O(pη+2), which is efficient for small
η. For the so-called walk-summable Gaussian graphical models, the parameter η can be
interpreted as an upper bound on the size of local vertex separators in the underlying
graph. Many graph families have small η and as such, are amenable to computationally
efficient structure estimation by our algorithm. These include Erdős-Rényi random graphs,
power-law graphs and small-world graphs, as discussed previously.

We establish that the proposed algorithm has a sample complexity of n = ω(J−2
min log p),

where p is the number of nodes (variables) and Jmin is the minimum (absolute) edge potential
in the model. As expected, the sample complexity improves when Jmin is large, i.e., the
model has strong edge potentials. However, as we shall see, Jmin cannot be arbitrarily large
for the model to be walk-summable. We derive the minimum sample complexity for various
graph families and show that this minimum is attained when Jmin takes the maximum
possible value.

We also develop novel techniques to obtain necessary conditions for consistent structure
estimation of Erdős-Rényi random graphs and other ensembles with non-uniform distribu-
tion of graphs. We obtain non-asymptotic bounds on the number of samples n in terms of
the expected degree and the number of nodes of the model. The techniques employed are
information-theoretic in nature (Cover and Thomas, 2006). We cast the learning problem as
a source-coding problem and develop necessary conditions which combine the use of Fano’s
inequality with the so-called asymptotic equipartition property.

Our sufficient conditions for structural consistency are based on walk-summability. This
characterization is novel to the best of our knowledge. Previously, walk-summable models
have been extensively studied in the context of inference in Gaussian graphical models. As
a by-product of our analysis, we also establish the correctness of loopy belief propagation for
walk-summable Gaussian graphical models Markov on locally tree-like graphs (see Section 5
for details). This suggests that walk-summability is a fundamental criterion for tractable
learning and inference in Gaussian graphical models.

1.2 Related Work

Given that structure learning of general graphical models is NP-hard (Karger and Srebro,
2001; Bogdanov et al., 2008), the focus has been on characterizing classes of models on
which learning is tractable. The seminal work of Chow and Liu (1968) provided an efficient
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implementation of maximum-likelihood structure estimation for tree models via a maximum
weighted spanning tree algorithm. Error-exponent analysis of the Chow-Liu algorithm was
studied (Tan et al., 2010) and extensions to general forest models were considered by Tan
et al. (2011) and Liu et al. (2011). Learning trees with latent (hidden) variables (Choi et al.,
2011) have also been studied recently.

For graphical models Markov on general graphs, alternative approaches are required
for structure estimation. A recent paradigm for structure estimation is based on convex
relaxation, where an estimate is obtained via convex optimization which incorporates an
`1-based penalty term to encourage sparsity. For Gaussian graphical models, such ap-
proaches have been considered in Meinshausen and Buehlmann (2006); Ravikumar et al.
(2008); d’Aspremont et al. (2008), and the sample complexity of the proposed algorithms
have been analyzed. A major disadvantage in using convex-relaxation methods is that the
incoherence conditions required for consistent estimation are hard to interpret and it is not
straightforward to characterize the class of models satisfying these conditions.

An alternative to the convex-relaxation approach is the use of simple greedy local algo-
rithms for structure learning. The conditions required for consistent estimation are typically
more transparent, albeit somewhat restrictive. Bresler et al. (2008) propose an algorithm
for structure learning of general graphical models Markov on bounded-degree graphs, based
on a series of conditional-independence tests. Abbeel et al. (2006) propose an algorithm,
similar in spirit, for learning factor graphs with bounded degree. Spirtes and Meek (1995)
and Cheng et al. (2002) propose conditional-independence tests for learning Bayesian net-
works. Netrapalli et al. (2010) proposed a faster greedy algorithm, based on conditional
entropy, for graphs with large girth and bounded degree. However, all the works (Bresler
et al., 2008; Abbeel et al., 2006; Spirtes and Meek, 1995; Cheng et al., 2002; Netrapalli
et al., 2010) require the maximum degree in the graph to be bounded (∆ = O(1)) which is
restrictive. We allow for graphs where the maximum degree can grow with the number of
nodes. Moreover, we establish a natural tradeoff between the maximum degree and other
parameters of the graph (e.g., girth) required for consistent structure estimation.

Necessary conditions for consistent graphical model selection provide a lower bound on
sample complexity and have been explored before by Santhanam and Wainwright (2008);
Wang et al. (2010). These works consider graphs drawn uniformly from the class of bounded
degree graphs and establish that n = Ω(∆k log p) samples are required for consistent struc-
ture estimation, in an p-node graph with maximum degree ∆, where k is typically a small
positive integer. However, a direct application of these methods yield poor lower bounds if
the ensemble of graphs has a highly non-uniform distribution. This is the case with the en-
semble of Erdős-Rényi random graphs (Bollobás, 1985). Necessary conditions for structure
estimation of Erdős-Rényi random graphs were derived for Ising models by Anandkumar
et al. (2010) based on an information-theoretic covering argument. However, this approach
is not directly applicable to the Gaussian setting. We present a novel approach for ob-
taining necessary conditions for Gaussian graphical model selection based on the notion
of typicality. We characterize the set of typical graphs for the Erdős-Rényi ensemble and
derive a modified form of Fano’s inequality and obtain a non-asymptotic lower bound on
sample complexity involving the average degree and the number of nodes.

We briefly also point to a large body of work on high-dimensional covariance selection
under different notions of sparsity. Note that the assumption of a Gaussian graphical model
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Markov on a sparse graph is one such formulation. Other notions of sparsity include Gaus-
sian models with sparse covariance matrices, or having a banded Cholesky factorization.
Also, note that many works consider covariance estimation instead of selection and in gen-
eral, estimation guarantees can be obtained under less stringent conditions. See Lam and
Fan (2009), Rothman et al. (2008), Huang et al. (2006) and Bickel and Levina (2008) for
details.

Paper Outline The paper is organized as follows. We introduce the system model in
Section 2. We prove the main result of our paper regarding the structural consistency of
conditional covariance thresholding test in Section 3. We prove necessary conditions for
model selection in Section 4. In Section 5, we analyze the performance of loopy belief
propagation in Gaussian graphical models. Section 6 concludes the paper. Proofs and
additional discussion are provided in the appendix.

2. Preliminaries and System Model

2.1 Gaussian Graphical Models

A Gaussian graphical model is a family of jointly Gaussian distributions which factor in
accordance to a given graph. Given a graph G = (V,E), with V = {1, . . . , p}, consider
a vector of Gaussian random variables X = [X1,X2, . . . ,Xp], where each node i ∈ V is
associated with a scalar Gaussian random variable Xi. A Gaussian graphical model Markov
on G has a probability density function (pdf) that may be parameterized as

fX(x) ∝ exp

[
−1

2
xTJGx+ hTx

]
, (2)

where JG is a positive-definite symmetric matrix whose sparsity pattern corresponds to that
of the graph G. More precisely,

JG(i, j) = 0 ⇐⇒ (i, j) /∈ G. (3)

The matrix JG is known as the potential or information matrix, the non-zero entries J(i, j)
as the edge potentials, and the vector h as the potential vector. A model is said to be
attractive if Ji,j ≤ 0 for all i 6= j. The form of parameterization in (2) is known as the
information form and is related to the standard mean-covariance parameterization of the
Gaussian distribution as

µ = J−1h, Σ = J−1,

where µ := E[X] is the mean vector and Σ := E[(X−µ)(X−µ)T ] is the covariance matrix.
We say that a jointly Gaussian random vector X with joint pdf f(x) satisfies local

Markov property with respect to a graph G if

f(xi|xN (i)) = f(xi|xV \i) (4)

holds for all nodes i ∈ V , where N (i) denotes the set of neighbors of node i ∈ V and, V \ i
denotes the set of all nodes excluding i. More generally, we say that X satisfies the global
Markov property, if for all disjoint sets A,B ⊂ V , we have

f(xA,xB |xS) = f(xA|xS)f(xB |xS). (5)
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where set S is a separator2 of A and B The local and global Markov properties are equivalent
for non-degenerate Gaussian distributions (Lauritzen, 1996).

The partial correlation coefficient between variables Xi and Xj , for i 6= j, measures their
conditional covariance given all other variables. These are computed by normalizing the
off-diagonal values of the information matrix, i.e.,

R(i, j) :=
Σ(i, j|V \ {i, j})√

Σ(i, i|V \ {i, j})Σ(j, j|V \ {i, j})
= − J(i, j)√

J(i, i)J(j, j)
. (6)

For all i ∈ V , set R(i, i) = 0. We henceforth refer to R as the partial correlation matrix.

Without loss of generality, henceforth assume that the diagonal of the potential matrix
J is normalized (J(i, i) = 1 for all i ∈ V ). Consider splitting the matrix J into the identity
matrix and the partial correlation matrix R, defined in (6):

J = I−R. (7)

We assume that the potentials are uniformly bounded above and below as

Jmin ≤ |JG(i, j)| ≤ Jmax, ∀ (i, j) ∈ G, (8)

Our results on structure learning depend on Jmin and Jmax, which is fairly natural – intu-
itively, models with edge potentials which are “too small” or “too large” are harder to learn
than those with comparable potentials. Since we consider the high-dimensional case where
the number of variables p grows, we let the bounds Jmin and Jmax to potentially scale with
p.

An important sub-class of Gaussian graphical models of the form in (7) are the walk-
summable models (Malioutov et al., 2006). A Gaussian model is said to be α-walk summable
if

‖R‖ ≤ α < 1, (9)

where R := [|R(i, j)|] denotes the entry-wise absolute value of the partial correlation matrix
R and ‖ · ‖ denotes the spectral or 2-norm of the matrix, which for symmetric matrices, is
given by the maximum absolute eigenvalue.

In other words, walk-summability means that an attractive model formed by taking
the absolute values of the partial correlation matrix of the Gaussian graphical model is also
valid (i.e., the corresponding potential matrix is positive definite). This immediately implies
that attractive models form a sub-class of walk-summable models. For detailed discussion
on walk-summability, see Section A.1.

2.2 Tractable Graph Families

We consider the class of Gaussian graphical models Markov on a graph Gp belonging to
some ensemble G(p) of graphs with p nodes. We consider the high-dimensional learning
regime, where both p and the number of samples n grow simultaneously; typically, the
growth of p is much faster than that of n. We emphasize that in our formulation the

2. A set S ⊂ V is a separator for sets A and B if the removal of nodes in S partitions A and B into distinct
components.
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graph ensemble G(p) can either be deterministic or random – in the latter, we also specify a
probability measure over the set of graphs in G(p). In the setting where G(p) is a random-
graph ensemble, let PX,G denote the joint probability distribution of the variables X and
the graph G ∼ G(p), and let fX|G denote the conditional (Gaussian) density of the variables
Markov on the given graph G. Let PG denote the probability distribution of graph G
drawn from a random ensemble G(p). We use the term almost every (a.e.) graph G satisfies
a certain property Q if

lim
p→∞

PG[G satisfies Q] = 1.

In other words, the property Q holds asymptotically almost surely3 (a.a.s.) with respect to
the random-graph ensemble G(p). Our conditions and theoretical guarantees will be based
on this notion for random graph ensembles. Intuitively, this means that graphs that have a
vanishing probability of occurrence as p → ∞ are ignored.

We now characterize the ensemble of graphs amenable for consistent structure estimation
under our formulation. To this end, we define the concept of local separation in graphs. See
Fig. 1 for an illustration. For γ ∈ N, let Bγ(i;G) denote the set of vertices within distance γ
from i with respect to graph G. Let Hγ,i := G(Bγ(i)) denote the subgraph of G spanned by
Bγ(i;G), but in addition, we retain the nodes not in Bγ(i) (and remove the corresponding
edges). Thus, the number of vertices in Hγ,i is p.

Definition 1 (γ-Local Separator) Given a graph G, a γ-local separator Sγ(i, j) between
i and j, for (i, j) /∈ G, is a minimal vertex separator4 with respect to the subgraph Hγ,i. In
addition, the parameter γ is referred to as the path threshold for local separation.

In other words, the γ-local separator Sγ(i, j) separates nodes i and j with respect to
paths in G of length at most γ. We now characterize the ensemble of graphs based on the
size of local separators.

Definition 2 ((η, γ)-Local Separation Property) An ensemble of graphs G(p; η, γ) sat-
isfies (η, γ)-local separation property if for a.e. Gp ∈ G(p; η, γ),

max
(i,j)/∈Gp

|Sγ(i, j)| ≤ η. (10)

In Section 3, we propose an efficient algorithm for graphical model selection when the
underlying graph belongs to a graph ensemble G(p; η, γ) with sparse local separators (i.e.,
small η, for η defined in (10)). We will see that the computational complexity of our
proposed algorithm scales as O(pη+2). We now provide examples of several graph families
satisfying (10).

Example 1: Bounded-Degree

We now show that the local-separation property holds for a rich class of graphs. Any
(deterministic or random) ensemble of degree-bounded graphs GDeg(p,∆) satisfies (η, γ)-
local separation property with η = ∆ and arbitrary γ ∈ N. If we do not impose any further

3. Note that the term a.a.s. does not apply to deterministic graph ensembles G(p) where no randomness is
assumed, and in this setting, we assume that the property Q holds for every graph in the ensemble.

4. A minimal separator is a separator of smallest cardinality.
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j

a b c d

i

S(i, j)

Figure 1: Illustration of l-local separator set S(i, j;G, l) for the graph shown above with
l = 4. Note that N (i) = {a, b, c, d} is the neighborhood of i and the l-local
separator set S(i, j;G, l) = {a, b} ⊂ N (i;G). This is because the path along c
connecting i and j has a length greater than l and hence node c /∈ S(i, j;G, l).

constraints on GDeg, the computational complexity of our proposed algorithm scales as
O(p∆+2) (see also Bresler et al. (2008) where the computational complexity is comparable).
Thus, when ∆ is large, our proposed algorithm and the one in Bresler et al. (2008) are
computationally intensive. Our goal in this paper is to relax the usual bounded-degree
assumption and to consider ensembles of graphs G(p) whose maximum degrees may grow
with the number of nodes p. To this end, we discuss other structural constraints which can
lead to graphs with sparse local separators.

Example 2: Bounded Local Paths

Another sufficient condition for the (η, γ)-local separation property in Definition 2 to hold is
that there are at most η paths of length at most γ in G between any two nodes (henceforth,
termed as the (η, γ)-local paths property). In other words, there are at most η number of
overlapping5 cycles of length smaller than 2γ.

In particular, a special case of the local-paths property described above is the so-called
girth property. The girth of a graph is the length of the shortest cycle. Thus, a graph
with girth g satisfies (η, γ)-local separation property with η = 1 and γ = g. Let GGirth(p; g)
denote the ensemble of graphs with girth at most g. There are many graph constructions
which lead to large girth. For example, the ensemble of ∆-random regular graphs, denoted
by GReg(p,∆), which is the uniform ensemble of regular graphs with degree ∆ has a girth of
Θ(log∆−1 p) (Chung, 1997, p. 107). Other constructions such as the bipartite Ramanujan
graph also have large girths (Chung, 1997, p. 107).

The girth condition can be weakened to allow for a small number of short cycles, while
not allowing for typical node neighborhoods to contain short cycles. Such graphs are termed
as locally tree-like. For instance, the ensemble of Erdős-Rényi graphs GER(p, c/p), where
an edge between any node pair appears with a probability c/p, independent of other node
pairs, is locally tree-like. The parameter c may grow with p, albeit at a controlled rate for

5. Two cycles are said to overlap if they have common vertices.
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tractable structure learning. We make this more precise in Example 3 in Section 3.1. The
proof of the following result may be found in (Anandkumar et al., 2011a, Lemma 3).

Proposition 3 (Random Graphs are Locally Tree-Like) The ensemble of Erdős-Rényi
graphs GER(p, c/p) satisfies the (η, γ)-local separation property in (10) with

η = 2, γ ≤ log p

4 log c
. (11)

Thus, there are at most two paths of length smaller than γ between any two nodes in
Erdős-Rényi graphs a.a.s, or equivalently, there are no overlapping cycles of length smaller
than 2γ a.a.s. Similar observations apply for the more general scale-free or power-law
graphs (Chung and Lu, 2006; Dommers et al., 2010).

Example 3: Small-World Graphs

The previous two examples showed local separation holds under two different conditions:
bounded maximum degree and bounded number of local paths. The former class of graphs
can have short cycles but the maximum degree needs to be constant, while the latter class
of graphs can have a large maximum degree but the number of overlapping short cycles
needs to be small. We now provide instances which incorporate both these features: large
degrees and short cycles, and yet satisfy the local separation property.

The class of hybrid graphs or augmented graphs (Chung and Lu, 2006, Ch. 12) consists
of graphs which are the union of two graphs: a “local” graph having short cycles and a
“global” graph having small average distances. Since the hybrid graph is the union of these
local and global graphs, it has both large degrees and short cycles. The simplest model
GWatts(p, d, c/p), first studied by Watts and Strogatz (1998), consists of the union of a d-
dimensional grid and an Erdős-Rényi random graph with parameter c. It is easily seen that
a.e. graph G ∼ GWatts(p, d, c/p) satisfies (η, γ)-local separation property in (10), with

η = d+ 2, γ ≤ log p

4 log c
.

Similar observations apply for more general hybrid graphs studied in (Chung and Lu, 2006,
Ch. 12).

3. Guarantees for Conditional Covariance Thresholding

3.1 Assumptions

(A1) Scaling Requirements: We consider the asymptotic setting where both the number
of variables (nodes) p and the number of samples n tend to infinity. We assume that
the parameters (n, p, Jmin) scale in the following fashion:6

n = ω(J−2
min log p). (12)

We require that the number of nodes p → ∞ to exploit the local separation properties
of the class of graphs under consideration.

6. The notations ω(·), Ω(·) refer to asymptotics as the number of variables p → ∞.
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(A2) Choice of threshold ξn,p: The threshold ξn,p for graph estimation under CCT

algorithm is chosen as a function of the number of nodes p, the number of samples n,
and the minimum edge potential Jmin as follows:

ξn,p = o(Jmin), ξn,p = ω(αγ), ξn,p = Ω

(√
log p

n

)
, (13)

where α is given by (14) and γ is the path-threshold (10) for the (η, γ)-local separation
property to hold.

(A3) α-Walk-summability: The Gaussian graphical model Markov on Gp ∼ G(p) is α-
walk summable a.a.s., i.e.,

‖RGp‖ ≤ α < 1, a.e. Gp ∼ G(p), (14)

where α is a constant (i.e., not a function of p), R := [|R(i, j)|] is the entry-wise
absolute value of the partial correlation matrix R.

(A4) Local-Separation Property: We assume that the ensemble of graphs G(p; η, γ)
satisfies the (η, γ)-local separation property with η, γ satisfying:

η = O(1), Jminα
−γ = ω(1), (15)

where α is given by (14).

(A5) Condition on Edge-Potentials: The minimum absolute edge potential of an α-
walk summable Gaussian graphical model satisfies

(1− α) min
(i,j)∈Gp

J(i, j)

K(i, j)
> 1 + δ, (16)

for almost every Gp ∼ G(p), for some δ > 0 (not depending on p) and let7

K(i, j) := ‖J(V \ {i, j}, {i, j})‖2.
Intuitively, (16) limits the extent of non-homogeneity in the model and the extent of
overlap of neighborhoods. Moreover, this assumption is not required for consistent
graphical model selection when the model is attractive (Ji,j ≤ 0 for i 6= j).8

Assumption (A1) stipulates how n, p and Jmin should scale for consistent graphical model
selection, i.e., the sample complexity. The sample size n needs to be sufficiently large with
respect to the number of variables p in the model for consistent structure reconstruction.
Assumption (A2) is with regard to the choice of a suitable threshold ξn,p for thresholding
conditional covariances. Assumptions (A3) and (A5) impose constraints on the model
parameters. Assumption (A4) restricts the class of graphs under consideration. To the
best of our knowledge, all previous works dealing with graphical model selection, e.g.,
Meinshausen and Buehlmann (2006), Ravikumar et al. (2008), also impose some conditions
for consistent graphical model selection. In the sequel, we compare the conditions for
consistent recovery after presenting our main theorem.

7. Here and in the sequel, for A,B ⊂ V , we use the notation J(A,B) to denote the sub-matrix of J indexed
by rows in A and columns in B.

8. The assumption (A5) rules out the possibility that the neighbors are marginally independent. See
Section B.2 for details.

10



High-Dimensional Gaussian Graphical Model Selection

Example 1: Degree-Bounded Ensembles

To gain a better understanding of conditions (A1)–(A5), consider the ensemble of graphs
GDeg(p;∆) with bounded degree ∆ ∈ N. It can be established that for the walk-summability
condition in (A3) to hold,9 we require that

Jmax = O

(
1

∆

)
. (17)

See Section A.2 for detailed discussion. When the minimum potential achieves the bound
(Jmin = Θ(1/∆)), a sufficient condition for (A3) to hold is given by

∆αγ = o(1), (18)

where γ is the path threshold for the local-separation property to hold according to Defi-
nition 2. Intuitively, we require a larger path threshold γ, as the degree bound ∆ on the
graph ensemble increases.

Note that (18) allows for the degree bound ∆ to grow with the number of nodes as
long as the path threshold γ also grows appropriately. For example, if the maximum degree
scales as ∆ = O(poly(log p)) and the path-threshold scales as γ = O(log log p), then (18) is
satisfied. This implies that graphs with fairly large degrees and short cycles can be recovered
successfully using our algorithm.

Example 2: Girth-Bounded Ensembles

The condition in (18) can be specialized for the ensemble of girth-bounded graphs GGirth(p; g)
in a straightforward manner as

∆αg = o(1), (19)

where g corresponds to the girth of the graphs in the ensemble. The condition in (19)
demonstrates a natural tradeoff between the girth and the maximum degree; graphs with
large degrees can be learned efficiently if their girths are large. Indeed, in the extreme
case of trees which have infinite girth, in accordance with (19), there is no constraint on
node degrees for successful recovery and recall that the Chow-Liu algorithm (Chow and
Liu, 1968) is an efficient method for model selection on tree distributions.

Example 3: Erdős-Rényi and Small-World Ensembles

We can also conclude that a.e. Erdős-Rényi graph G ∼ GER(p, c/p) satisfies (15) when
c = O(poly(log p)) under the best-possible scaling of Jmin subject to the walk-summability
constraint in (14).

This is because it can be shown that Jmin = O(1/
√
∆) for walk-summability in (14)

to hold. See Section A.2 for details. Noting that a.a.s., the maximum degree ∆ for G ∼
GER(p, c/p) satisfies

∆ = O

(
log p log c

log log p

)
,

9. We can provide improved bounds for random-graph ensembles. See Section A.2 for details.
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from (Bollobás, 1985, Ex. 3.6) and γ = O( log plog c ) from (11). Thus, the Erdős-Rényi graphs
are amenable to successful recovery when the average degree c = O(poly(log p)). Similarly,
for the small-world ensemble GWatts(p, d, c/p), when d = O(1) and c = O(poly(log p)), the
graphs are amenable for consistent estimation.

3.2 Consistency of Conditional Covariance Thresholding

Assuming (A1) – (A5), we now state our main result. The proof of this result and the
auxiliary lemmata for the proof can be found in Sections B and Section C.

Theorem 4 (Structural consistency of CCT) For structure learning of Gaussian graph-
ical models Markov on a graph Gp ∼ G(p; η, γ), CCT(xn; ξn,p, η) is consistent for a.e. graph
Gp. In other words,

lim
n,p→∞

n=ω(J−2
min log p)

P [CCT ({xn}; ξn,p, η) 6= Gp] = 0 (20)

Remarks:

1. Consistency guarantee: The CCT algorithm consistently recovers the structure
of Gaussian graphical models asymptotically, with probability tending to one, where
the probability measure is with respect to both the random graph (drawn from the
ensemble G(p; η, γ) and the samples (drawn from

∏n
i=1 f(xi|G)).

2. Analysis of sample complexity: The above result states that the sample complex-
ity for the CCT (n = ω(J−2

min log p)), which improves when the minimum edge potential
Jmin is large.10 This is intuitive since the edges have stronger potentials in this case.
On the other hand, Jmin cannot be arbitrarily large since the α-walk-summability as-
sumption in (14) imposes an upper bound on Jmin. The minimum sample complexity
(over different parameter settings) is attained when Jmin achieves this upper bound.
See Section A.2 for details. For example, for any degree-bounded graph ensemble
G(p,∆) with maximum degree ∆, the minimum sample complexity is n = ω(∆2 log p)
i.e., when Jmin = Θ(1/∆), while for Erdős-Rényi random graphs, the minimum sample
complexity can be improved to n = ω(∆ log p), i.e., when Jmin = Θ(1/

√
∆).

3. Comparison with Ravikumar et al. (2008): The work by Ravikumar et al.
(2008) employs an `1-penalized likelihood estimator for structure estimation in Gaus-
sian graphical models. Under the so-called incoherence conditions, the sample com-
plexity is n = Ω((∆2 + J−2

min) log p). Our sample complexity in (12) is the same in
terms of its dependence on Jmin, and there is no explicit dependence on the max-
imum degree ∆. Moreover, we have a transparent sufficient condition in terms of
α-walk-summability in (14), which directly imposes scaling conditions on Jmin.

4. Comparison with Meinshausen and Buehlmann (2006): The work by Mein-
shausen and Buehlmann (2006) considers `1-penalized linear regression for neighbor-
hood selection of Gaussian graphical models and establish a sample complexity of

10. Note that the sample complexity also implicitly depends on walk-summability parameter α through (15).
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n = Ω((∆ + J−2
min) log p). We note that our guarantees allow for graphs which do not

necessarily satisfy the conditions imposed by Meinshausen and Buehlmann (2006). For
instance, the assumption of neighborhood stability (assumption 6 in (Meinshausen
and Buehlmann, 2006)) is hard to verify in general, and the relaxation of this as-
sumption corresponds to the class of models with diagonally-dominant covariance
matrices. Note that the class of Gaussian graphical models with diagonally-dominant
covariance matrices forms a strict sub-class of walk-summable models, and thus sat-
isfies assumption (A3) for the theorem to hold. Thus, Theorem 4 applies to a larger
class of Gaussian graphical models compared to Meinshausen and Buehlmann (2006).
Furthermore, the conditions for successful recovery in Theorem 4 are arguably more
transparent.

5. Comparison with Ising models: Our above result for learning Gaussian graphi-
cal models is analogous to structure estimation of Ising models subject to an upper
bound on the edge potentials (Anandkumar et al., 2011b), and we characterize such a
regime as a conditional uniqueness regime. Thus, walk-summability is the analogous
condition for Gaussian models.

Proof Outline We first analyze the scenario when exact statistics are available. (i) We
establish that for any two non-neighbors (i, j) /∈ G, the minimum conditional covariance
in (1) (based on exact statistics) does not exceed the threshold ξn,p. (ii) Similarly, we also
establish that the conditional covariance in (1) exceeds the threshold ξn,p for all neighbors
(i, j) ∈ G. (iii) We then extend these results to empirical versions using concentration
bounds.

3.2.1 Performance of Conditional Mutual Information Test

We now employ the conditional mutual information test, analyzed in Anandkumar et al.
(2011b) for Ising models, and note that it has slightly worse sample complexity than using
conditional covariances. Using the threshold ξn,p defined in (13), the conditional mutual
information test CMIT is given by the threshold test

min
S⊂V \{i,j}

|S|≤η

Î(Xi;Xj |XS) > ξ2n,p, (21)

and node pairs (i, j) exceeding the threshold are added to the estimate Ĝn
p . Assuming (A1)

– (A5), we have the following result.

Theorem 5 (Structural consistency of CMIT) For structure learning of the Gaussian
graphical model on a graph Gp ∼ G(p; η, γ), CMIT(xn; ξn,p, η) is consistent for a.e. graph
Gp. In other words,

lim
n,p→∞

n=ω(J−4
min log p)

P [CMIT ({xn}; ξn,p, η) 6= Gp] = 0 (22)

The proof of this theorem is provided in Section C.3.

Remarks:

13
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1. For Gaussian random variables, conditional covariances and conditional mutual in-
formation are equivalent tests for conditional independence. However, from above
results, we note that there is a difference in the sample complexity for the two tests.
The sample complexity of CMIT is n = ω(J−4

min log p) in contrast to n = ω(J−2
min log p)

for CCT. This is due to faster decay of conditional mutual information on the edges
compared to the decay of conditional covariances. Thus, conditional covariances are
more efficient for Gaussian graphical model selection compared to conditional mutual
information.

4. Necessary Conditions for Model Selection

In the previous sections, we proposed and analyzed efficient algorithms for learning the
structure of Gaussian graphical models Markov on graph ensembles satisfying local-separation
property. In this section, we study the problem of deriving necessary conditions for consis-
tent structure learning.

For the class of degree-bounded graphs GDeg(p,∆), necessary conditions on sample com-
plexity have been characterized before (Wang et al., 2010) by considering a certain (limited)
set of ensembles. However, a näıve application of such bounds (based on Fano’s inequality
(Cover and Thomas, 2006, Ch. 2)) turns out to be too weak for the class of Erdős-Rényi
graphs GER(p, c/p), where the average degree11 c/2 is much smaller than the maximum
degree.

We now provide necessary conditions on the sample complexity for recovery of Erdős-
Rényi graphs. Our information-theoretic techniques may also be applicable to other ensem-
bles of random graphs. This is a promising avenue for future work.

4.1 Setup

We now describe the problem more formally. A graph G is drawn from the ensemble of
Erdős-Rényi graphs G ∼ GER(p, c/p). The learner is also provided with n conditionally
i.i.d. samples Xn := (X1, . . . ,Xn) ∈ (X p)n (where X = R) drawn from the conditional
(Gaussian) product probability density function (pdf)

∏n
i=1 f(xi|G). The task is then to

estimate G, a random quantity. The estimate is denoted as Ĝ := Ĝ(Xn). It is desired to
derive tight necessary conditions on n (as a function of c and p) so that the probability of
error

P (p)
e := P (Ĝ 6= G) → 0 (23)

as the number of nodes p tends to infinity. Note that the probability measure P in (23) is
associated to both the realization of the random graph G and the samples Xn.

The task is reminiscent of source coding (or compression), a problem of central impor-
tance in information theory (Cover and Thomas, 2006) – we would like to derive fundamental
limits associated to the problem of reconstructing the source G given a compressed version
of it Xn (Xn is also analogous to the “message”). However, note the important distinction;
while in source coding, the source coder can design both the encoder and the decoder, our

11. The techniques in this section are applicable when the average degree (c/2) of GER(p, c/p) ensemble is a
function of p, e.g., c = O(poly(log p)).
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- - -

Xm ∼ Pm(x)
Encoder

M ∈ [2mR]

Decoder
X̂m

Figure 2: The canonical source coding problem. See Chapter 3 in (Cover and Thomas,
2006).

- - -

G ∼ GER(p,
c
p)

n∏

i=1

f(xi|G)

Xn ∈ (Rp)n

Decoder
Ĝ

Figure 3: The estimation problem is analogous to source coding: the “source” is G ∼
GER(p,

c
p), the “message” is Xn ∈ (Rp)n and the “decoded source” is Ĝ. We are

asking what the minimum “rate” (analogous to the number of samples n) are
required so that Ĝ = G with high probability.

problem mandates that the code is fixed by the conditional probability density f(x|G). We
are only allowed to design the decoder. See comparisons in Figs. 2 and 3.

4.2 Necessary Conditions for Exact Recovery

To derive the necessary condition for learning Gaussian graphical models Markov on sparse
Erdős-Rényi graphs G ∼ GER(p, c/p), we assume that the strict walk-summability condition
with parameter α, according to (14). We are then able to demonstrate the following:

Theorem 6 (Weak Converse for Gaussian Models) For a walk-summable Gaussian
graphical model satisfying (14) with parameter α, for almost every graph G ∼ GER(p, c/p)

as p → ∞, in order for P
(p)
e → 0, we require that

n ≥ 2

p log2

[
2πe

(
1

1−α + 1
)]
(
p

2

)
Hb

(
c

p

)
(24)

for all p sufficiently large.

The proof is provided in Section D.1. By expanding the binary entropy function, it is easy
to see that the statement in (24) can be weakened to the necessary condition:

n ≥ c log2 p

log2

[
2πe

(
1

1−α + 1
)] . (25)

The above condition does not involve any asymptotic notation, and also demonstrates the
dependence of the sample complexity on p, c and α transparently. Finally, the dependence
on α can be explained as follows: any α-walk-summable model is also β-walk-summable
for all β > α. Thus, the class of β-walk-summable models contains the class of α-walk-
summable models. This results in a looser bound in (24) for larger α.
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4.3 Necessary Conditions for Recovery with Distortion

In this section, we generalize Theorem 6 to the case where we only require estimation of
the underlying graph up to a certain edit distance: an error is declared if and only if the
estimated graph Ĝ exceeds an edit distance (or distortion) D of the true graph. The edit
distance d : Gp×Gp → N∪{0} between two undirected graphs G = (V,E) and G = (V,E′)
is defined as d(G,G′) := |E4E′|, where 4 denotes the symmetric difference between the
edge sets E and E′. The edit distance can be regarded as a distortion measure between two
graphs.

Given an positive integer D, known as the distortion, suppose we declare an error if and
only if d(G,G′) > D, then the probability of error is redefined as

P (p)
e := P (d(G, Ĝ(Xn)) > D). (26)

We derive necessary conditions on n (as a function of p and c) such that the probability of
error (26) goes to zero as p → ∞. To ease notation, we define the ratio

β := D/

(
p

2

)
. (27)

Note that β may be a function of p. We do not attempt to make this dependence explicit.
The following corollary is based on an idea propounded by Kim et al. (2008) among others.

Corollary 7 (Weak Converse for Discrete Models With Distortion) For P
(p)
e → 0,

we must have

n ≥ 2

p log2

[
2πe

(
1

1−α + 1
)]
(
p

2

)[
Hb

(
c

p

)
−Hb (β)

]
(28)

for all p sufficiently large.

The proof of this corollary is provided in Section D.7. Note that for (28) to be a useful
bound, we need β < c/p which translates to an allowed distortion D < cp/2. We observe
from (28) that because the error criterion has been relaxed, the required number of samples
is also reduced from the corresponding lower bound in (24).

4.4 Proof Techniques

Our analysis tools for deriving necessary conditions for Gaussian graphical model selection
are information-theoretic in nature. A common and natural tool to derive necessary con-
ditions (also called converses) is to resort to Fano’s inequality (Cover and Thomas, 2006,

Chapter 2), which (lower) bounds the probability of error P
(p)
e as a function of the equivo-

cation or conditional entropy H(G|Xn) and the size of the set of all graphs with p nodes.
However, a direct and näıve application Fano’s inequality results in a trivial lower bound as
the set of all graphs, which can be realized by GER(p, c/p) is, loosely speaking, “too large”.

To ameliorate such a problem, we employ another information-theoretic notion, known
as typicality. A typical set is, roughly speaking, a set that has small cardinality and yet has
high probability as p → ∞. For example, the probability of a set of length-m sequences is
of the order ≈ 2mH (where H is the entropy rate of the source) and hence those sequences
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with probability close to this value are called typical. In our context, given a graph G, we
define the average degree d̄(G) to be the ratio of the number of edges of G to the total
number of nodes p. Let Gp denote the set of all graphs with p nodes. For a fixed ε > 0, we
define the following set of graphs:

T (p)
ε :=

{
G ∈ Gp :

∣∣∣∣
d̄(G)

c
− 1

2

∣∣∣∣ ≤
ε

2

}
. (29)

The set T (p)
ε is known as the ε-typical set of graphs. Every graph G ∈ T (p)

ε has an average
degree that is c

2ε-close to the average degree of the graphs in the Erdős-Rényi ensemble.
Note that typicality ideas are usually used to derive sufficient conditions in information
theory (Cover and Thomas, 2006) (achievability in information-theoretic parlance); our use
of both typicality for graphical model selection as well as Fano’s inequality to derive converse
statements seems novel. Indeed, the proof of the converse of the source coding theorem in
Cover and Thomas (2006, Chapter 3) utilizes only Fano’s inequality. We now summarize
the properties of the typical set.

Lemma 8 (Properties of T (p)
ε ) The ε-typical set of graphs has the following properties:

1. P (T (p)
ε ) → 1 as p → ∞.

2. For all G ∈ T (n)
ε , we have12

exp2

[
−
(
p

2

)
Hb

(
c

p

)
(1 + ε)

]
≤ P (G) ≤ exp2

[
−
(
p

2

)
Hb

(
c

p

)]
. (30)

3. The cardinality of the ε-typical set can be bounded as

(1− ε) exp2

[(
p

2

)
Hb

(
c

p

)]
≤ |T (p)

ε | ≤ exp2

[(
p

2

)
Hb

(
c

p

)
(1 + ε)

]
(31)

for all p sufficiently large.

The proof of this lemma can be found in Section D.2. Parts 1 and 3 of Lemma 8 respectively
say that the set of typical graphs has high probability and has very small cardinality relative
to the number of graphs with p nodes |Gp| = exp2(

(
p
2

)
). Part 2 of Lemma 8 is known as

the asymptotic equipartition property: the graphs in the typical set are almost uniformly
distributed.

5. Implications on Loopy Belief Propagation

An active area of research in the graphical model community is that of inference – i.e.,
the task of computing node marginals (or MAP estimates) through efficient distributed
algorithms. The simplest of these algorithms is the belief propagation13 (BP) algorithm,

12. We use the notation exp2( · ) to mean 2( · ).
13. The variant of the belief propagation algorithm which computes the MAP estimates is known as the

max-product algorithm.
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where messages are passed among the neighbors of the graph of the model. It is known
that belief propagation (and max-product) is exact on tree models, meaning that correct
marginals are computed at all the nodes (Pearl, 1988). On the other hand on general
graphs, the generalized version of BP, known as loopy belief propagation (LBP), may not
converge and even if it does, the marginals may not be correct. Motivated by the twin
problems of convergence and correctness, there has been extensive work on characterizing
LBP’s performance for different models. See Section 5.3 for details. As a by-product of our
previous analysis on graphical model selection, we now show the asymptotic correctness of
LBP on walk-summable Gaussian models when the underlying graph is locally tree-like.

5.1 Background

The belief propagation (BP) algorithm is a distributed algorithm where messages (or beliefs)
are passed among the neighbors to draw inferences at the nodes of a graphical model. The
computation of node marginals through näıve variable elimination (or Gaussian elimination
in the Gaussian setting) is prohibitively expensive. However, if the graph is sparse (consists
of few edges), the computation of node marginals may be sped up dramatically by exploiting
the graph structure and using distributed algorithms to parallelize the computations.

For the sake of completeness, we now recall the basic steps in LBP, specific to Gaussian
graphical models. Given a message schedule which specifies how messages are exchanged,
each node j receives information from each of its neighbors (according to the graph), where
the message, mt

i→j(xj), from i to j, in tth iteration is parameterized as

mt
i→j(xj) := exp

[
−1

2
∆J t

i→jx
2
j +∆hti→jxj

]
.

Each node i prepares message mt
i→j(xj) by collecting messages from neighbors of the pre-

vious iteration (under parallel iterations), and computing

Ĵi\j(t) = J(i, i) +
∑

k∈N (i)\j

∆J t−1
k→i, ĥi\j(t) = h(i) +

∑

k∈N (i)\j

∆hk→i(t),

where

∆J t
i→j = −J(j, i)Ĵ−1

i\j (t)J(j, i), ∆hti→j = −J(j, i)Ĵ−1
i\j (t)ĥk→i(t).

5.2 Results

Let ΣLBP(i, i) denote the variance at node i at the LBP fixed point.14 We consider the
following ensemble of locally-tree like graphs:

Consider the event that the neighborhood of a node i has no cycles up to graph distance
γ, given by

Γ(i; γ,G) := {Bγ(i;G) does not contain any cycles}.
Let us assume a random graph ensemble G(p) such that for a given node i ∈ V , we have

P [Γc(i; γ,G)] = o(1). (32)

14. Convergence of LBP on walk-summable models has been established by Malioutov et al. (2006).
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Proposition 9 (Correctness of LBP) Given an α-walk-summable Gaussian graphical
model on a.e. locally tree-like graph G ∼ G(p; γ) with parameter γ satisfying (32), we
have

|ΣG(i, i) − ΣLBP(i, i)| a.a.s.= O(max(αγ , P [Γc(i; γ,G)])). (33)

The proof is given in Section B.3.

Remarks:

1. The class of Erdős-Rényi random graphs, G ∼ GER(p, c/p) satisfies (32), with γ =
O(log p/ log c) for a node i ∈ V chosen uniformly at random.

2. Recall that the class of random regular graphs G ∼ GReg(p,∆) have a girth of
O(log∆−1 p). Thus, for any node i ∈ V , (32) holds with γ = O(log∆−1 p).

5.3 Previous Work on Loopy Belief Propagation

It has long been known through numerous empirical studies (Murphy et al., 1999) and the
phenomenal successes of turbo decoding (McEliece et al., 2002), that loopy belief prop-
agation (LBP) performs reasonably well on a variety of graphical models though it also
must be mentioned that LBP fails catastrophically on other models. Weiss (2000) proved
that if the underlying graph (of a Gaussian graphical model) consists of a single cycle,
LBP converges and is correct, i.e., the fixed points of the means and the variances are the
same as the true means and variances. In addition, sufficient conditions for a unique fixed
point are known (Mooij and Kappen, 2007). The max-product variant of LBP (called the
max-product or min-sum algorithm) has been studied (Bayati et al., 2005; Sanghavi et al.,
2009; Ruozzi and Tatikonda, 2010). Despite its seemingly heuristic nature, LBP has found
a variety of concrete applications, especially in combinatorial optimization (Moallemi and
Van Roy, 2010; Gamarnik et al., 2010). Indeed, it has been applied and analyzed for NP-
hard problems such as maximum matching (Bayati et al., 2008b), b-matching (Sanghavi
et al., 2009), the Steiner tree problem (Bayati et al., 2008a).

The application of BP for inference in Gaussian graphical models has been studied
extensively – starting with the seminal work by Weiss and Freeman (2001). Undoubtedly
the Kalman filter is the most familiar instance of BP in Gaussian graphical models. The
notion of walk-summability in Gaussian graphical models was introduced by Malioutov
et al. (2006). Among other results, the authors showed that LBP converges to the correct
means for walk- summable models but the estimated variances may nevertheless still be
incorrect. Chandrasekaran et al. (2008) leveraged the ideas of Malioutov et al. (2006) to
analyze related inference algorithms such as embedded trees and the block Gauss-Seidel
method. Recently, Liu et al. (2010) considered a modified version of LBP by identifying a
special set of nodes – called the feedback vertex set (FVS) (Vazirani, 2001) – that breaks
(or approximately breaks) cycles in the loopy graph. This allows one to perform inference
in a tractably to tradeoff accuracy and computational complexity. For Gaussian graphical
models Markov on locally tree-like graphs, an approximate FVS can be identified. This
set, though not an FVS per se, allows one to break all the short cycles in the graph and
thus, it allows for proving tight error bounds on the inferred variances. The performance of
LBP on locally tree-like graphs has also been studied for other families of graphical models.
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For Ising models Markov on locally tree-like graphs, the work by Dembo and Montanari
(2010) established an analogous result for attractive (also known as ferromagnetic) models.
Note that walk-summable Gaussian graphical models is a superset of the class of attractive
Gaussian models. An interpretation of LBP in terms of graph covers is given by Vontobel
(2010) and its equivalence to walk-summability for Gaussian graphical models is established
by Ruozzi et al. (2009).

6. Conclusion

In this paper, we adopted a novel and a unified paradigm for graphical model selection.
We presented a simple local algorithm for structure estimation with low computational
and sample complexities under a set of mild and transparent conditions. This algorithm
succeeds on a wide range of graph ensembles such as the Erdős-Rényi ensemble, small-world
networks etc. We also employed novel information-theoretic techniques for establishing
necessary conditions for graphical model selection.
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Appendix A. Walk-summable Gaussian Graphical Models

A.1 Background on Walk-Summability

We now recap the properties of walk-summable Gaussian graphical models, as given by
(14). For details, see Malioutov et al. (2006). The covariance matrix Σ of the graphical
model in (7) can be decomposed as

Σ = J−1 = (I− J)−1 =

∞∑

k=0

Rk, ‖R‖ < 1, (34)

using Neumann power series for the matrix inverse. Note that we require that ‖R‖ < 1 for
(34) to hold, which is implied by walk-summability in (14) (since ‖R‖ ≤ ‖R‖).

We now relate the matrix power Rl to walks on graph G. A walk w of length l ≥ 0
on graph G is a sequence of nodes w := (w0, w1, . . . , wl) traversed on the graph G, i.e.,
(wk, wk+1) ∈ G. Let |w| denote the length of the walk. Given matrix RG supported on
graph G, let the weight of the walk be

φ(w) :=

|w|∏

k=1

R(wk−1, wk).

The elements of the matrix power Rl are given by

Rl(i, j) =
∑

w:i
l
→j

φ(w), (35)
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where i
l→ j denotes the set of walks from i to j of length l. For this reason, we henceforth

refer to R as the walk matrix.
Let i → j denote all the walks between i and j. Under the walk-summability condition

in (14), we have convergence of
∑

w:i→j φ(w), irrespective of the order in which the walks
are collected, and this is equal to the covariance Σ(i, j).

In Section A.3, we relate walk-summability in (14) to the notion of correlation decay,
where the effect of faraway nodes on covariances can be controlled and the local-separation
property of the graphs under consideration can be exploited.

A.2 Sufficient Conditions for Walk-summability

We now provide sufficient conditions and suitable parameterization for walk-summability
in (14) to hold. The adjacency matrix AG of a graph G with maximum degree ∆G satisfies

λmax(AG) ≤ ∆G,

since it is dominated by a ∆-regular graph which has maximum eigenvalue of ∆G. From
Perron-Frobenius theorem, for adjacency matrix AG, we have λmax(AG) = ‖AG‖, where
‖AG‖ is the spectral radius of AG. Thus, for RG supported on graph G, we have

α := ‖RG‖ = O (Jmax∆) ,

where Jmax := maxi,j |R(i, j)|. This implies that

Jmax = O

(
1

∆

)
(36)

to have α < 1, which is the requirement for walk-summability.
When the graph G is a Erdős-Rényi random graph, G ∼ GER(p, c/p), we can provide

better bounds. When G ∼ GER(p, c/p), we have (Krivelevich and Sudakov, 2003), that

λmax(AG) = (1 + o(1))max(
√

∆G, c),

where ∆G is the maximum degree and AG is the adjacency matrix. Thus, in this case,
when c = O(1), we require that

Jmax = O

(√
1

∆

)
, (37)

for walk-summability (α < 1). Note that when c = O(poly(log p)), w.h.p. ∆Gp =
Θ(log p/ log log p) (Bollobás, 1985, Ex. 3.6).

A.3 Implications of Walk-Summability

Recall that ΣG denotes the covariance matrix for Gaussian graphical model on graph G and
that JG = Σ−1

G with JG = I −RG in (7). We now relate the walk-summability condition
in (14) to correlation decay in the model. In other words, under walk-summability, we can
show that the effect of faraway nodes on covariances decays with distance, as made precise
in Lemma 10.
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Let Bγ(i) denote the set of nodes within γ hops from node i in graph G. Denote

Hγ;ij := G(Bγ(i) ∩Bγ(j)) (38)

as the induced subgraph of G over the intersection of γ-hop neighborhoods at i and j and
retaining the nodes in V \ {Bγ(i) ∪ Bγ(j)}. Thus, Hγ;ij has the same number of nodes as
G. . We first make the following simple observation: the (i, j) element in the γth power of
walk matrix, Rγ

G(i, j), is given by walks of length γ between i and j on graph G and thus,
depends only on subgraph15 Hγ;ij (see (35)). This enables us to quantify the effect of nodes
outside Bγ(i) ∩Bγ(j) on the covariance ΣG(i, j).

Define a new walk matrix RHγ;ij such that

RHγ;ij (a, b) =

{
RG(a, b), a, b ∈ Bγ(i) ∩Bγ(j), (39)

0, o.w. (40)

In other words, RHγ;ij is formed by considering the Gaussian graphical model over graph
Hγ;ij. Let ΣHγ;ij denote the corresponding covariance matrix.16

Lemma 10 (Covariance Bounds Under Walk-summability) For any walk-summable
Gaussian graphical model (α := ‖RG‖ < 1), we have17

max
i,j

|ΣG(i, j) − ΣHγ;ij(i, j)| ≤ αγ 2α

1− α
= O(αγ). (41)

Thus, for walk-summable Gaussian graphical models, we have α := ‖RG‖ < 1, imply-
ing that the error in (41) in approximating the covariance by local neighborhood decays
exponentially with distance. Parts of the proof below are inspired by Dumitriu and Pal
(2009).
Proof: Using the power-series in (34), we can write the covariance matrix as

ΣG =

γ∑

k=0

Rk
G +EG,

where the error matrix EG has spectral radius

‖EG‖ ≤ ‖RG‖γ+1

1− ‖RG‖
,

from (34). Thus,18 for any i, j ∈ V ,

|ΣG(i, j) −
γ∑

k=0

Rk
G(i, j)| ≤

‖RG‖γ+1

1− ‖RG‖
. (42)

15. Note that Rγ(i, j) = 0 if Bγ(i) ∩Bγ(j) = ∅.
16. When Bγ(i) ∩ Bγ(j) = ∅ meaning that graph distance between i and j is more than γ, we obtain

ΣHγ;ij
= I.

17. The bound in (41) also holds if Hγ;ij is replaced with any of its supergraphs.
18. For any matrix A, we have maxi,j |A(i, j)| ≤ ‖A‖.
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Similarly, we have

|ΣHγ;ij (i, j) −
γ∑

k=0

Rk
Hγ;ij

(i, j)| ≤ ‖RHγ;ij‖γ+1

1− ‖RHγ;ij‖
(43)

(a)

≤ ‖RG‖γ+1

1− ‖RG‖
, (44)

where for inequality (a), we use the fact that

‖RHγ;ij‖ ≤ ‖RHγ;ij‖ ≤ ‖RG‖,

since Hγ;ij is a subgraph19 of G.
Combining (42) and (44), using the triangle inequality, we obtain (41). 2

We also make some simple observations about conditional covariances in walk-summable
models. Recall that RG denotes matrix with absolute values of RG, and RG is the walk
matrix over graph G. Also recall that the α-walk summability condition in (14), is ‖RG‖ ≤
α < 1.

Proposition 11 (Conditional Covariances under Walk-Summability) Given a walk-
summable Gaussian graphical model, for any i, j ∈ V and S ⊂ V with i, j /∈ S, we have

Σ(i, j|S) =
∑

w:i→j
∀k∈w,k /∈S

φG(w). (45)

Moreover, we have
sup
i∈V

S⊂V \i

Σ(i, i|S) ≤ (1− α)−1 = O(1). (46)

Proof: We have, from Rue and Held (2005, Thm. 2.5),

Σ(i, j|S) = J−1
−S,−S;G(i, j),

where J−S,−S;G denotes the submatrix of potential matrix JG by deleting nodes in S. Since
submatrix of a walk-summable matrix is walk-summable, we have (45) by appealing to the
walk-sum expression for conditional covariances.

For (46), let ‖A‖∞ denote the maximum absolute value of entries in matrix A. Using
monotonicity of spectral norm and the fact that ‖A‖∞ ≤ ‖A‖, we have

sup
i∈V

S⊂V,i/∈V

Σ(i, i|S) ≤ ‖J−1
−S,−S;G‖ = (1− ‖R−S,−S;G‖)−1

≤ (1− ‖R−S,−S;G‖)−1 ≤ (1− ‖RG‖)−1 = O(1).

2

Thus, the conditional covariance in (45) consists of walks in the original graph G, not
passing through nodes in S.

19. When two matrices A and B are such that |A(i, j)| ≥ |B(i, j)| for all i, j, we have ‖A‖ ≥ ‖B‖.

23



Anandkumar, Tan, and Willsky

Appendix B. Graphs with Local-Separation Property

B.1 Conditional Covariance between Non-Neighbors

We now provide bounds on the conditional covariance for Gaussian graphical models Markov
on a graph G ∼ G(p; η, γ) satisfying the local-separation property (η, γ), as per Definition 2.

Lemma 12 (Conditional Covariance Between Non-neighbors) For a walk-summable
Gaussian graphical model, the conditional covariance between non-neighbors i and j, con-
ditioned on Sγ, the γ-local separator between i and j, satisfies

max
j /∈N (i)

Σ(i; j|Sγ) = O(‖RG‖γ). (47)

Proof: In this proof, we abbreviate Sγ by S for notational convenience. The conditional
covariance is given by the Schur complement, i.e., for any subset A such that A ∩ S = ∅,

Σ(A|S) = Σ(A,A)− Σ(A,S)Σ(S, S)−1Σ(S,A). (48)

We use the notation ΣG(A,A) to denote the submatrix of the covariance matrix ΣG,
when the underlying graph is G. As in Lemma 10, we may decompose ΣG as follows:

ΣG = ΣHγ +Eγ ,

whereHγ is the subgraph spanned by γ-hop neighborhood Bγ(i), and Eγ is the error matrix.
Let Fγ be the matrix such that

ΣG(S, S)
−1 = ΣHγ (S, S)

−1 + Fγ .

We have ΣHγ (i, j|S) = 0, where ΣHγ(i, j|S) denotes the conditional covariance by con-
sidering the model given by the subgraph Hγ . This is due to the Markov property since i
and j are separated by S in the subgraph Hγ .

Thus using (48), the conditional covariance on graph G can be bounded as

ΣG(i, j|S) = O(max(‖Eγ‖, ‖Fγ‖)).

By Lemma 10, we have ‖Eγ‖ = O(‖RG‖γ). Using Woodbury matrix-inversion identity, we
also have ‖Fγ‖ = O(‖RG‖γ). 2

B.2 Conditional Covariance between Neighbors

We provide a lower bound on conditional covariance among the neighbors for the graphs
under consideration. Recall that Jmin denotes the minimum edge potentials. Let

K(i, j) := ‖J(V \ {i, j}, {i, j})‖2,

where J(V \ {i, j}, {i, j}) is a sub-matrix of the potential matrix J.
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Lemma 13 (Conditional Covariance Between Neighbors) For an α-walk summable
Gaussian graphical model satisfying

(1− α) min
(i,j)∈Gp

J(i, j)

K(i, j)
> 1 + δ, (49)

for some δ > 0 (not depending on p), we have

|ΣG(i, j|S)| = Ω(Jmin), (50)

for any (i, j) ∈ G such that j ∈ N (i) and any subset S ⊂ V with i, j /∈ S.

Proof: First note that for attractive models,

ΣG(i, j|S)
(a)

≥ ΣG1(i, j|S)
(b)
=

−J(i, j)

1− J(i, j)2
= Ω(Jmin), (51)

where G1 is the graph consisting only of edge (i, j). Inequality (a) arises from the fact
that in attractive models, the weights of all the walks are positive, and thus, the weight of
walks on G1 form a lower bound for those on G (recall that the covariances are given by
the sum-weight of walks on the graphs). Equality (b) is by direct matrix inversion of the
model on G1, assuming that J = I−R is in the normalized form.

For general models, we need further analysis. Let A = {i, j} and B = V \ {S ∪A}, for
some S ⊂ V \ A. Let Σ(A,A) denote the covariance matrix on set A, and let J̃(A,A) :=
Σ(A,A)−1 denote the corresponding marginal potential matrix. We have for all S ⊂ V \A

J̃(A,A) = J(A,A) − J(A,B)J(B,B)−1J(B,A).

Recall that ‖A‖∞ denotes the maximum absolute value of entries in matrix A.

‖J(A,B)J(B,B)−1J(B,A)‖∞
(a)

≤‖J(A,B)J(B,B)−1J(B,A)‖
(b)

≤‖J(A,B)‖2‖J(B,B)−1‖

=
‖J(A,B)‖2

λmin(J(B,B))
, (52)

(c)

≤ K(i, j)2

1− α
(53)

where inequality (a) arises from the fact that the `∞ norm is bounded by the spectral norm,
(b) arises from sub-multiplicative property of norms and (c) arises from walk-summability
property. Inequality (b) is from the bound on edge potentials and α-walk summability of
the model and since K(i, j) ≥ ‖J(A,B)‖. Assuming (49), we have

|J̃(i, j)| > Jmin −
‖J(A,B)‖2

1− α
= Ω(Jmin).

Since

ΣG(i, j|S) =
−J̃(i, j)

1− J̃(i, j)2
,

we have the result. 2
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B.3 Analysis of Loopy Belief Propagation

Proof of Proposition 9: From Lemma 10 in Section A.3, for any α-walk-summable Gaussian
graphical model, we have, for all nodes i ∈ V conditioned on the event Γ(i; γ,G),

|ΣG(i, i) − ΣLBP(i, i)| = O(‖RG‖γ). (54)

This is because conditioned on Γ(i; γ,G), it is shown that the series expansions based
on walk-sums corresponding to the variances ΣHγ;ij (i, i) and ΣLBP(i, i) are identical up to
length γ walks, and the effect of walks beyond length γ can be bounded as above. Moreover,
for a sequence of α-walk-summable, we have Σ(i, i) ≤ M for all i ∈ V , for some constant
M and similarly ΣLBP(i, j) ≤ M ′ for some constant M ′ since it is obtained by the set of
self-avoiding walks in G. We thus have

E [|ΣG(i, i) − ΣLBP(i, i)|] ≤
[
O(‖RG‖γ) + P [Γc(i; γ)]

]
= o(1),

where E is over the expectation of ensemble G(p). By Markov’s inequality20, we have the
result. 2

Appendix C. Sample-based Analysis

C.1 Concentration of Empirical Quantities

For our sample complexity analysis, we recap the concentration result by Ravikumar et al.
(2008, Lemma 1) for sub-Gaussian matrices and specialize it to Gaussian matrices.

Lemma 14 (Concentration of Empirical Covariances) For any p-dimensional Gaus-
sian random vector X = [X1, . . . ,Xp], the empirical covariance obtained from n samples
satisfies

P
[
| Σ̂(i, j) − Σ(i, j)| > ε

]
≤ 4 exp

[
− nε2

3200M2

]
, (55)

for all ε ∈ (0, 40M) and M := maxiΣ(i, i).

This translates to bounds for empirical conditional covariance.

Corollary 15 (Concentration of Empirical Conditional Covariance) For a walk-summable
p-dimensional Gaussian random vector X = [X1, . . . ,Xp], we have

P


 max

i 6=j
S⊂V,|S|≤η

| Σ̂(i, j|S) − Σ(i; j|S)| > ε


 ≤ 4pη+2 exp

(
− nε2

3200M2

)
, (56)

for all ε ∈ (0, 40M) and for constant M ∈ (0,∞).

Proof: Since the model is walk-summable, we have that M := maxi,S Σ(i, i|S) = O(1).
The result then follows from union bound. 2

20. By Markov’s inequality, for a non-negative random variable X, we have P [X > δ] ≤ E[X]/δ. By choosing
δ = ω(E[X]), we have the result.
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C.2 Proof of Theorem 4

We are now ready to prove Theorem 4. We analyze the error events for the conditional
covariance threshold test CCT. For any (i, j) /∈ Gp, define the event

F1(i, j; {xn}, Gp) :=
{
|Σ̂(i, j|S)| > ξn,p

}
, (57)

where ξn,p is the threshold in (13) and S is the γ-local separator in (1). Similarly for any
edge (i, j) ∈ Gp, define the event that

F2(i, j; {xn}, Gp) :=
{
∃S ⊂ V : |S| ≤ η, |Σ̂(i, j|S)| < ξn,p

}
. (58)

The probability of error resulting from CCT can thus be bounded by the two types of errors,

P[CCT({xn}; ξn,p) 6= Gp] ≤ P


 ⋃

(i,j)∈Gp

F2(i, j; {xn}, Gp)




+ P


 ⋃

(i,j)/∈Gp

F1(i, j; {xn}, Gp)


 (59)

For the first term, applying union bound for both the terms and using the result (56) of
Lemma 14,

P


 ⋃

(i,j)∈Gp

F2(i, j; {xn}, Gp)


 = O

(
pη+2 exp

[
−n(Cmin(p)− ξn,p)

2

3200M2

])
(60)

where

Cmin(p) := inf
(i,j)∈Gp

S⊂V,i,j /∈S
|S|≤η

|Σ(i, j|S)| = Ω(Jmin), ∀ p ∈ N, (61)

from (65). Since ξn,p = o(Jmin), (60) is o(1) when n > L log p/J2
min, for sufficiently large L

(depending on η and M). For the second term in (59),

P


 ⋃

(i,j)/∈Gp

F1(i, j; {xn}, Gp)


 = O

(
pη+2 exp

[
−n(ξn,p − Cmax(p))

2

3200M2

])
, (62)

where

Cmax(p) := max
(i,j)/∈Gp

|Σ(i, j|S)| = O(αγ), (63)

from (64). For the choice of ξn,p in (13), (62) is o(1) and this completes the proof of
Theorem 4.
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C.3 Conditional Mutual Information Thresholding Test

We now analyze the performance of conditional mutual information threshold test. We first
note bounds on conditional mutual information.

Proposition 16 (Conditional Mutual Information) Under the assumptions (A1)–(A5),
we have that the conditional mutual information among non-neighbors, conditioned on the
γ-local separation satisfies

max
(i,j)/∈G

I(Xi;Xj |XSγ ) = O(α2γ), (64)

and the conditional mutual information among the neighbors satisfy

min
(i,j)∈G

S⊂V \{i,j}

I(Xi;Xj |XS) = Ω(J2
min). (65)

Proof: The conditional mutual information for Gaussian variables is given by

I(Xi;Xj |XS) = −1

2
log
[
1− ρ2(i, j|S)

]
, (66)

where ρ(i, j|S) is the conditional correlation coefficient, given by

ρ(i, j|S) := Σ(i, j|S)√
Σ(i, i|S)Σ(j, j|S)

.

From (46) in Proposition 11, we have Σ(i, i|S) = O(1) and thus, the result holds. 2

We now note the concentration bounds on empirical mutual information.

Lemma 17 (Concentration of Empirical Mutual Information) For any p-dimensional
Gaussian random vector X = [X1, . . . ,Xp], the empirical covariance obtained from n sam-
ples satisfies

P (|Î(Xi;Xj)− I(Xi;Xj)| > ε) ≤ 24 exp

(
− nMε2

204800L2

)
, (67)

for some constant L which is finite when ρmax := maxi 6=j |ρ(i, j)| < 1, and all ε < ρmax, and
for M := maxiΣ(i, i).

Proof: The result on empirical covariances can be found in (Ravikumar et al., 2008,
Lemma 1). The result in (67) will be shown through a sequence of transformations. First,
we will bound P (|ρ̂(i, j) − ρ(i, j)| > ε). Consider,

P (|ρ̂(i, j) − ρ(i, j)| > ε)

= P

(∣∣∣∣∣
Σ̂(i, j)

(Σ̂(i, i)Σ̂(j, j))1/2
− Σ(i, j)

(Σ(i, i)Σ(j, j))1/2

∣∣∣∣∣ > ε

)

= P



∣∣∣∣∣∣
Σ̂(i, j)

Σ(i, j)

(
Σ̂(i, i)

Σ(i, i)

Σ̂(j, j)

Σ(j, j)

)1/2

− 1

∣∣∣∣∣∣
>

ε

|ρ(i, j)|
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(a)

≤ P

(
Σ̂(i, j)

Σ(i, j)
>

(
1 +

ε

|ρ(i, j)|

)1/3
)

+ P

(
Σ̂(i, j)

Σ(i, j)
<

(
1− ε

|ρ(i, j)|

)1/3
)

+ . . .

+ P

(
Σ̂(i, i)

Σ(i, i)
>

(
1 +

ε

|ρ(i, j)|

)2/3
)

+ P

(
Σ̂(i, i)

Σ(i, i)
<

(
1− ε

|ρ(i, j)|

)2/3
)

+ . . .

+ P

(
Σ̂(j, j)

Σ(j, j)
>

(
1 +

ε

|ρ(i, j)|

)2/3
)

+ P

(
Σ̂(j, j)

Σ(j, j)
<

(
1− ε

|ρ(i, j)|

)2/3
)

(b)

≤ P

(
Σ̂(i, j)

Σ(i, j)
> 1 +

ε

8|ρ(i, j)|

)
+ P

(
Σ̂(i, j)

Σ(i, j)
< 1− ε

8|ρ(i, j)|

)
+ . . .

+ P

(
Σ̂(i, i)

Σ(i, i)
> 1 +

ε

2|ρ(i, j)|

)
+ P

(
Σ̂(i, i)

Σ(i, i)
< 1− ε

2|ρ(i, j)|

)
+ . . .

+ P

(
Σ̂(j, j)

Σ(j, j)
> 1 +

ε

2|ρ(i, j)|

)
+ P

(
Σ̂(j, j)

Σ(j, j)
< 1− ε

2|ρ(i, j)|

)

(c)

≤ 24 exp

(
− nMε2

204800|ρ(i, j)|2
)

(d)

≤ 24 exp

(
− nMε2

204800

)

where in (a), we used the fact that P (ABC > 1 + δ) ≤ P (A > (1 + δ)1/3 or B > (1 +
δ)1/3 or C > (1+ δ)1/3) and the union bound, in (b) we used the fact that (1+ δ)3 ≤ 1+8δ
and (1 + δ)3 ≤ (1 + 2δ)2 for δ = ε/|ρ(i, j)| < 1. Finally, in (c), we used the result in (55)
and in (d), we used the bounds on ρ < 1.

Now, define the bijective function I(|ρ|) := −1/2 log(1− ρ2). Then we claim that there
exists a constant L ∈ (0,∞), depending only on ρmax < 1, such that

|I(x)− I(y)| ≤ L|x− y|, (68)

i.e., the function I : [0, ρmax] → R
+ is L = L(ρmax)-Lipschitz. This is because the slope of

the function I is bounded in the interval [0, ρmax]. Thus, we have the inclusion

{|Î(Xi;Xj)− I(Xi;Xj)| > ε} ⊂ {|ρ̂(i, j) − ρ(i, j)| > ε/L} (69)

since if |Î(Xi;Xj)− I(Xi;Xj)| > ε it is true that L|ρ̂(i, j)− ρ(i, j)| > ε from (68). We have
by monotonicity of measure and (69) the desired result. 2

We can now obtain the desired result on concentration of empirical conditional mutual
information.

Lemma 18 (Concentration of Empirical Conditional Mutual Information) For a
walk-summable p-dimensional Gaussian random vector X = [X1, . . . ,Xp], we have

P


 max

i 6=j
S⊂V \{i,j},|S|≤η

|Î(Xi;Xj |XS)− I(Xi;Xj |XS)| > ε


 ≤ 24pη+2 exp

(
− nMε2

204800L2

)
, (70)

for constants M,L ∈ (0,∞) and all ε < ρmax, where ρmax := max i 6=j
S⊂V \{i,j},|S|≤η

|ρ(i, j|S)|.
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Proof: Since the model is walk-summable, we have that maxi,S Σ(i, i|S) = O(1) and thus,
the constant M is bounded. Similarly, due to strict positive-definiteness we have ρmax < 1
even as p → ∞, and thus, the constant L is also finite. The result then follows from union
bound. 2

The sample complexity for structural consistency of CMIT follows on lines of analysis
for CCT.

Appendix D. Necessary Conditions for Model Selection

D.1 Necessary Conditions for Exact Recovery

We provide the proof of Theorem 6 in this section. We collect four auxiliary lemmata whose
proofs (together with the proof of Lemma 8) will be provided at the end of the section. For
information-theoretic notation, the reader is referred to Cover and Thomas (2006).

Lemma 19 (Upper Bound on Differential Entropy of Mixture) Let α < 1. Sup-
pose asymptotically almost surely each precision matrix JG = I − RG satisfies (14), i.e.,
that ‖RG‖ ≤ α for a.e. G ∈ G(p). Then, for the Gaussian model, we have

h(Xn) ≤ pn

2
log2

(
2πe

1− α

)
, (71)

where recall that Xn|G ∼∏n
i=1 f(xi|G).

For the sake of convenience, we define the random variable:

W =

{
1 G ∈ T (p)

ε

0 G /∈ T (p)
ε

. (72)

The random variable W indicates whether G ∈ T (p)
ε .

Lemma 20 (Lower Bound on Conditional Differential Entropy) Suppose that each
precision matrix JG has unit diagonal. Then,

h(Xn|G,W ) ≥ −pn

2
log2(2πe). (73)

Lemma 21 (Conditional Fano Inequality) In the above notation, we have

H(G|Xn, G ∈ T (p)
ε )− 1

log2(|T (p)
ε | − 1)

≤ P (Ĝ(Xn) 6= G|G ∈ T (p)
ε ). (74)

Lemma 22 (Exponential Decay in Probability of Atypical Set) Define the rate func-
tion K(c, ε) := c

2 [(1 + ε) ln(1 + ε)− ε]. The probability of the ε-atypical set decays as

P ((T (p)
ε )c) = P (G /∈ T (p)

ε ) ≤ 2 exp (−pK(c, ε)) (75)

for all p ≥ 1.
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Note the non-asymptotic nature of the bound in (75). The rate function K(c, ε) satisfies
limε↓0 K(c, ε)/ε2 = c/4. We prove Theorem 6 using these lemmata.

Proof: Consider the following sequence of lower bounds:

pn

2
log2

(
2πe

1− α

)
(a)

≥ h(Xn)

(b)

≥ h(Xn|W ) (76)

= I(Xn;G|W ) + h(Xn|G,W )

(c)

≥ I(Xn;G|W )− pn

2
log2(2πe)

= H(G|W )−H(G|Xn,W )− pn

2
log2(2πe), (77)

where (a) follows from Lemma 19, (b) is because conditioning does not increase differential
entropy and (c) follows from Lemma 20. We will lower bound the first term in (77) and
upper bound the second term in (77). Now consider the first term in (77):

H(G|W ) = H(G|W = 1)P (W = 1) +H(G|W = 0)P (W = 0)

(a)

≥ H(G|W = 1)P (W = 1)

(b)

≥ H(G|G ∈ T (p)
ε )(1− ε)

(c)

≥(1− ε)

(
p

2

)
Hb

(
c

p

)
, (78)

where (a) is because the entropy H(G|W = 0) and the probability P (W = 0) are both
non-negative. Inequality (b) follows for all p sufficiently large from the definition of W as
well as Lemma 8 part 1. Statement (c) comes from fact that

H(G|G ∈ T (p)
ε ) = −

∑

g∈T
(p)
ε

P (g|g ∈ T (p)
ε ) log2 P (g|g ∈ T (p)

ε )

≥ −
∑

g∈T
(p)
ε

P (g|g ∈ T (p)
ε )

[
−
(
p

2

)
Hb

(
c

p

)]
=

(
p

2

)
Hb

(
c

p

)
.

We are now done bounding the first term in the difference in (77).

Now we will bound the second term in (77). First we will derive a bound onH(G|Xn,W =
1). Consider,

P (p)
e := P (Ĝ(Xn) 6= G)

(a)
= P (Ĝ(Xn) 6= G|W = 1)P (W = 1) + P (Ĝ(Xn) 6= G|W = 0)P (W = 0)

≥ P (Ĝ(Xn) 6= G|W = 1)P (W = 1)

(b)

≥ P (Ĝ(Xn) 6= G|G ∈ T (p)
ε )

(
1

1 + ε

)
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(c)

≥ H(G|Xn, G ∈ T (p)
ε )− 1

log2 |T (p)
ε |

(
1

1 + ε

)
, (79)

where (a) is by the law of total probability, (b) holds for all p sufficiently large by Lemma 8
part 1 and (c) is due to the conditional version of Fano’s inequality (Lemma 21). Then,
from (79), we have

H(G|Xn,W = 1) ≤ P (p)
e (1 + ε) log2 |T (p)

ε |+ 1

≤ P (p)
e (1 + ε)

(
p

2

)
Hb

(
c

p

)
+ 1. (80)

Define the rate function K(c, ε) := c
2 [(1+ ε) ln(1+ ε)− ε]. Note that this function is positive

whenever c, ε > 0. In fact it is monotonically increasing in both parameters. Now we utilize
(80) to bound H(G|Xn,W ):

H(G|Xn,W ) = H(G|Xn,W = 1)P (W = 1) +H(G|Xn,W = 0)P (W = 0)

(a)

≤ H(G|Xn,W = 1) +H(G|Xn,W = 0)P (W = 0)

(b)

≤ H(G|Xn,W = 1) +H(G|Xn,W = 0)(2e−pK(c,ε))

(c)

≤H(G|Xn,W = 1) + p2(2e−pK(c,ε))

(d)

≤ P (p)
e (1 + ε)

(
p

2

)
Hb

(
c

p

)
+ 1 + 2p2e−pK(c,ε), (81)

where (a) is because we upper bounded P (W = 1) by unity, (b) follows by Lemma 22, (c)
follows by upper bounding the conditional entropy by p2 and (d) follows from (80).

Substituting (78) and (81) back into (77) yields

pn

2
log2

[
2πe

(
1

1− α
+ 1

)]
≥ (1− ε)

(
p

2

)
Hb

(
c

p

)
− P (p)

e (1 + ε)

(
p

2

)
Hb

(
c

p

)
− 1− 2p2e−pK(c,ε)

=

(
p

2

)
Hb

(
c

p

)[
(1− ε)− P (p)

e (1 + ε)
]
−Θ(p2e−pK(c,ε)),

which implies that

n ≥ 2

p log2

[
2πe

(
1

1−α + 1
)]
(
p

2

)
Hb

(
c

p

)[
(1− ε)− P (p)

e (1 + ε)
]
−Θ(pe−pK(c,ε)).

Note that Θ(pe−pK(c,ε)) → 0 as p → ∞ since the rate function K(c, ε) is positive. If we

impose that P
(p)
e → 0 as p → ∞, then n has to satisfy (24) by the arbitrariness of ε > 0.

This completes the proof of Theorem 6. 2

D.2 Proof of Lemma 8

Proof: Part 1 follows directed from the law of large numbers. Part 2 follows from the

fact that the Binomial pmf is maximized at its mean. Hence, for G ∈ T (p)
ε , we have

P (G) ≤
(
c

p

)cp/2(
1− c

p

)(p2)−cp/2

.
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We arrive at the upper bound after some rudimentary algebra. The lower bound can be

proved by observing that for G ∈ T (p)
ε , we have

P (G) ≥
(
c

p

)cp(1+ε)/2(
1− c

p

)(p2)−cp(1+ε)/2

= exp2

[(
p

2

)
(
c

p
log2

c

p
)(1 + ε) + [1− c(1 + ε)/p] log2(1−

c

p
)

]

≥ exp2

[(
p

2

)
(
c

p
log2

c

p
)(1 + ε) + (1 + ε)(1− c

p
) log2(1−

c

p
)

]
.

The result in Part 2 follows immediately by appealing to the symmetry of the binomial pmf
about its mean. Part 3 follows by the following chain of inequalities:

1 =
∑

G∈Gn

P (G) ≥
∑

G∈T
(p)
ε

P (G) ≥
∑

G∈T
(p)
ε

exp2

[
−
(
p

2

)
Hb

(
c

p
(1 + ε)

)]

= |T (p)
ε | exp2

[
−
(
p

2

)
Hb

(
c

p

)
(1 + ε)

]
.

This completes the proof of the upper bound on |T (p)
ε |. The lower bound follows by noting

that for sufficiently large n, P (T (p)
ε ) ≥ 1− ε (by Lemma 8 Part 1). Thus,

1− ε ≤
∑

G∈T
(p)
ε

P (G) ≤
∑

G∈T
(p)
ε

exp2

[
−
(
p

2

)
Hb

(
c

p

)]
= |T (p)

ε | exp2
[
−
(
p

2

)
Hb

(
c

p

)]
.

This completes the proof. 2

D.3 Proof of Lemma 19

Proof: Note that the distribution of X (with G marginalized out) is a Gaussian mixture
model given by

∑
G∈Gp

P (G)N (0,J−1
G ). As such the covariance matrix of X is given by

ΣX =
∑

G∈Gp

P (G)J−1
G . (82)

This is not immediately obvious but it is due to the zero-mean nature of each Gaussian
probability density function N (0,J−1

G ). Using (82), we have the following chain of inequal-
ities:

h(Xn) ≤ nh(X)

(a)

≤ n

2
log2 ((2πe)

p det(ΣX))

=
n

2
[p log2(2πe) + log2 det(ΣX)]

(b)

≤ n

2
[p log2(2πe) + p log2 λmax(ΣX)]
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=
n

2


p log2(2πe) + p log2 λmax


∑

G∈Gp

P (G)J−1
G






(c)

≤ n

2


p log2(2πe) + p log2


∑

G∈Gp

P (G)λmax

(
J−1
G

)





=
n

2


p log2(2πe) + p log2


∑

G∈Gp

P (G)
1

λmin(JG)






(d)

≤ n

2


p log2(2πe) + p log2


∑

G∈Gp

P (G)
1

1− α






=
pn

2
log2

(
2πe

1− α

)
,

where (a) uses the maximum entropy principle (Cover and Thomas, 2006, Chapter 13) i.e.,
that the Gaussian maximizes entropy subject to an average power constraint (b) uses the
fact that the determinant of ΣX is upper bounded by λmax(ΣX)

n, (c) uses the convexity of
λmax( · ) (it equals to the operator norm ‖ · ‖2 over the set of symmetric matrices, (d) uses
the fact that α ≥ ‖RG‖2 ≥ ‖RG‖2 = ‖I− JG‖2 = λmax(I− JG) = 1− λmin(JG) a.a.s. This
completes the proof. 2

D.4 Proof of Lemma 20

Proof: Firstly, we lower bound h(Xn|G,W = 1) as follows:

h(Xn|G) =
∑

g∈Gp

P (g)h(Xn|G = g)

(a)
= n

∑

g∈Gp

P (g)h(X|G = g)

(b)
=

n

2

∑

g∈Gp

P (g) log2[(2πe)
p det(J−1

g )]

= −n

2

∑

g∈Gp

P (g) log2[(2πe)
p det(Jg)]

(c)

≥ −n

2

∑

g∈Gp

P (g) log2[(2πe)
p]

≥ −pn

2
log2(2πe),

where (a) is because the samples in Xn are conditionally independent given G = g, (b) is
by the Gaussian assumption, (c) is by Hadamard’s inequality

det(Jg) ≤
p∏

i=1

[Jg]ii = 1 (83)
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and the assumption that each diagonal element of each precision matrix Jg = I − Rg is
equal to 1 a.a.s. This proves the claim. 2

D.5 Proof of Lemma 21

Proof: Define the “error” random variable

E =

{
1 Ĝ(Xn) 6= G

0 Ĝ(Xn) = G
.

Now consider

H(E,G|Xn,W = 1) = H(E|Xn,W = 1) +H(G|E,Xn,W = 1) (84)

= H(G|Xn,W = 1) +H(E|G,Xn,W = 1). (85)

The first term in (84) can be bounded above by 1 since the alphabet of the random variable
E is of size 2. Since H(G|E = 0,Xn,W = 1) = 0, the second term in (84) can be bounded
from above as

H(G|E,Xn,W = 1) = H(G|E = 0,Xn,W = 1)P (E = 0|W = 1)

+H(G|E = 1,Xn,W = 1)P (E = 1|W = 1)

≤ P (Ĝ(Xn) 6= G|G ∈ T (p)
ε ) log2(|T (p)

ε | − 1).

The second term in (85) is 0. Hence, we have the desired conclusion. 2

D.6 Proof of Lemma 22

Proof: The proof uses standard Chernoff bounding techniques but the scaling in p is
somewhat different from the usual Chernoff (Cramér) upper bound. For simplicity, we will
use M :=

(p
2

)
. Let Yi, i = 1, . . . ,M be independent Bernoulli random variables such that

P (Yi = 1) = c/p. Then the probability in question can be bounded as

P (G /∈ T (p)
ε ) = P

(∣∣∣∣∣
1

cp

M∑

i=1

Yi −
1

2

∣∣∣∣∣ >
ε

2

)

(a)

≤ 2P

(
1

cp

M∑

i=1

Yi >
1 + ε

2

)

(b)

≤ 2E

[
exp

(
t

M∑

i=1

Yi − p t
c

2
(1 + ε)

)]
(86)

= 2 exp
(
−p t

c

2
(1 + ε)

) M∏

i=1

E[exp(tYi)], (87)

where (a) follows from the union bound, (b) follows from an application of Markov’s in-
equality with t ≥ 0 in (86). Now, the moment generating function of a Bernoulli random
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variable with probability of success q is qet + (1− q). Using this fact, we can further upper
bound (87) as follows:

P (G /∈ T (p)
ε ) = 2 exp

(
−p t

c

2
(1 + ε) +M ln(

c

p
et + (1− c

p
)

)

(a)

≤ 2 exp

(
−p t

c

2
(1 + ε) +

p(p− 1)

2

c

p
(et − 1)

)

≤ 2 exp
(
−p
[
t
c

2
(1 + ε)− c

2
(et − 1)

])
, (88)

where in (a), we used the fact that ln(1 + z) ≤ z . Now, we differentiate the exponent
in square brackets with respect to t ≥ 0 to find the tightest bound. We observe that the
optimal parameter is t∗ = ln(1 + ε). Substituting this back into (88) completes the proof.

2

D.7 Necessary Conditions for Recovery with Distortion

We now provide the proof for Corollary 7.
The proof of Corollary 7 follows from the following generalization of the conditional

Fano’s inequality presented in Lemma 21. This is a modified version of an analogous
theorem in (Kim et al., 2008).

Lemma 23 (Conditional Fano’s Inequality (Generalization)) In the above notation,
we have

H(G|Xn, G ∈ T (p)
ε )− 1− log2 L

log2(|T (p)
ε | − 1)

≤ P (d(G, Ĝ(Xn)) > D|G ∈ T (p)
ε ) (89)

where L =
(
p
2

)
Hb(β) and β is defined in (27).

We will only provide a proof sketch of Lemma 23 since it is similar to Lemma 21. Proof:
The key to establishing (89) is to upper bound the cardinality of the set {G ∈ Gp :

d(G,G′) ≤ D}, which is isomorphic to {E ∈ Ep : |E4E′| ≤ D}, where Ep is the set
of all edge sets (with p nodes). For this purpose, we order the node pairs in a labelled
undirected graph lexicographically. Now, we map each edge set E into a length-

(
p
2

)
bit-

string s(E) ∈ {0, 1}(p2). The characters in the string s(E) indicate whether or not an edge
is present between two node pairs. Define dH(s, s′) to be the Hamming distance between
strings s and s′. Then, note that

|E4E′| = dH(s(E), s(E′)) = dH(s(E)⊕ s(E′), 0) (90)

where ⊕ denotes addition in F2 and 0 denotes the all zeros string. The relation in (90)
means that the cardinality of the set {E ∈ En : |E4E′| ≤ D} is equal to the number of
strings of Hamming weight less than or equal to D. With this realization, it is easy to see
that

|{s ∈ {0, 1}(p2) : dH(s, 0) ≤ D}| =
D∑

k=1

((p
2

)

k

)
≤ 2(

p
2)Hb(D/(p2)) = 2L.

By using the same steps as in the proof of Lemma 23 (or Fano’s inequality for list decoding),
we arrive at the desired conclusion. 2
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