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Abstract—The problem of binary hypothesis testing is con-
sidered when the measurements are drawn from a Markov
random field (MRF) under each hypothesis. Spatial dependence
of the measurements is incorporated by explicitly modeling the
influence of sensor node locations on the clique potential functions
of each MRF hypothesis. The nodes are placed i.i.d. in expanding
areas with increasing sample size. Asymptotic performance of
hypothesis testing is analyzed through the Neyman-Pearson type-
II error exponent. The error exponent is expressed as the limit
of a functional over dependency edges of the MRF hypotheses
for acyclic graphs. Using the law of large numbers for graph
functionals, the error exponent is derived.

Index Terms—Error exponent, Markov random field, random
graphs, law of large numbers for graph functionals.

I. INTRODUCTION

The assumption that the observations are i.i.d. under each

hypothesis is often used in the literature [1]. While the i.i.d.

assumption leads to elegant results, it is often violated in

practice. In this paper, we focus on the case when under each

hypothesis, the observation samples are correlated according

to a Markov random field (MRF) model which depends on the

spatial locations from where the samples are collected.

For hypothesis testing, the probability of making an error is

a key performance measure. It is desired that this error decay

exponentially with increasing sample size. The rate of expo-

nential decay of error probability is known as the detection

error exponent, which serves as a performance measure for

large-scale networks. It is not always tractable to find the error

exponent in closed form. Although there are established results

for the error exponent for general hypotheses [2], further

simplifications are possible only for special cases, such as for

i.i.d. or stationary samples [3].

It is challenging to find the error exponent for general hy-

potheses, especially for spatially-dependent samples collected

from irregular locations. We consider random distribution for

spatial location of the measurement samples thereby introduc-

ing additional randomness into the hypothesis-testing problem.

As a result, the error-exponent analysis is influenced by the

node-location distribution, and we study it here.
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A. Related Work and Contributions

The large-deviation analysis for the test of simple hy-

potheses with general distributions exists [2], [4], but closed-

form expressions are possible only for certain cases. Such

an analysis for homogeneous Gauss-Markov random fields

on lattices have been considered in [5], [6]. However, their

techniques are not easily generalized to irregular spatially-

dependent distributions, considered here. In [7], an expression

for the Kullback-Leibler (KL) divergence rate is derived when

the two distributions are Markov chains of arbitrary order,

which is a special case of the formulation here. In [8]–[10],

approximations to the KL divergence rates for hidden Markov

chains are derived.

In [11], we considered a special case of the problem

here, viz., of testing a Gauss-Markov random field (GMRF)

with nearest-neighbor dependency graph against independence

when the nodes are uniformly distributed. In this paper, we

extend the results to more general distributions, and node

location distributions.

In this paper, we derive the error exponent in closed form

when the MRF hypotheses have acyclic stabilizing dependency

graphs, such as the nearest-neighbor graph. The key issue we

address is the influence of node placement on the resulting

detection error exponent. This provides guidelines for efficient

node placements to maximize detection performance. We

express the error exponent as a functional over the edges of a

stabilizing graph and then use the law of large numbers (LLN)

to evaluate it, recently proposed by Penrose and Yukich [12].

II. SYSTEM MODEL

A. Stochastic model of sensor locations

We assume that n sensor nodes are placed randomly with

sensor i located at Vi ∈ R
2 and Vn:=[V1, . . . , Vn]. We

consider a sequence of sensor populations on expanding square

regions Qn
λ

of area n
λ

centered at the origin, where we fix λ as

the overall sensor density and let the number of sensors n→
∞. To generate sensor locations Vi, first let Q1 := [− 1

2 ,
1
2 ]2

be the unit area square, and Xi
i.i.d.
∼ τ, 1 ≤ i ≤ n, be a set

of n independent and identically distributed (i.i.d.) random

variables distributed on Q1 according to τ . We next generate

Vi by scaling Xi accordingly: Vi =
√

n
λ
Xi ∈ Qn

λ
. Let Pλ be

the homogeneous Poisson distribution on R
2 with density λ.



B. Graphical inference model

The inference problem we consider is the simple binary

hypothesis testing H0 vs. H1 on a pair of Markov random

fields (MRF). A MRF is defined by its (undirected) depen-

dency graph G and an associated pdf f(· | G). Under each

hypothesis Hm, let Gm(Vn) be the dependency graph of the

MRF, where Vn = {V1, · · · , Vn} is the set of random node,

described in Sec II-A. We denote the (random) measurements

from all the sensors in a set V by YV. The inference problem

can be stated as:

H0 :[YVn
,Vn] ∼ f(yvn

| G0(vn),H0)

n
∏

i=1

τ(
√

λ
n
vi),

H1 :[YVn
,Vn] ∼ f(yvn

| G1(vn),H1)

n
∏

i=1

τ(
√

λ
n
vi). (1)

The conditional pdfs f(yvn
| Gm(vn),Hm) are defined on

the Lesbegue measure, and f(yvn
| G0(vn),H0) is absolutely

continuous1 with respect to f(yvn
| G1(vn),H1) [13]. Note

that sensor locations have the same distribution under either

hypothesis. Therefore, only the conditional distribution under

each hypothesis is relevant for inference.

The celebrated Hammersley-Clifford theorem states that,

under the positivity condition [14], the likelihood function is

f(yvn
|Gm(vn),Hm) =

1

Zm(vn)
exp[−

∑

c∈Cm

ψm,c(yc)], (2)

where Cm is a collection of (maximal) cliques in Gm(vn), the

functions ψm,c, known as clique potentials, are real valued,

and Zm(vn) > 0 is the normalization constant, also known as

the partition function. In general, it is NP-hard to evaluate the

partition function for given potential functions, although for

the Gaussian distribution, it can be evaluated in polynomial

time since it reduces to the evaluation of a determinant.

C. Spatial Modeling: Dependency Graph and Potentials

A key modeling feature in this paper is to incorporate the

spatial dependence of sensor measurements. This is achieved

by explicitly specifying the influence of (random) node lo-

cations on the MRF dependency graph and the conditional

distributions of the measurements given the node locations.

We restrict our attention to proximity-based local depen-

dency graphs such as the (undirected) (k-NNG) or the disk

graph (also known as continuum percolation). An important

localization property of these graphs is stabilization facilitating

asymptotic scaling analysis.

We assume that a set of clique potentials ψm,c > 0 under

either hypothesis can be parameterized locally by the sensor

locations of the clique members and their l-hop neighbors, for

some finite l, in a translation-invariant manner, i.e.,

ψm,c(yc;vn) = ψm,c(yc;vn + v), ∀c ∈ Cm, v ∈ R, (3)

ψm,c(yc;vn) = ψm,c(yc; {vi : N l(i) ∈ c}), ∀c ∈ Cm, (4)

1We use the convention that 0 log 0

q
= 0 and p log p

0
= ∞.

where N l is the set of all 0 to l-hop neighbors. Further

conditions are imposed for acyclic graphs in Section III-A.

D. Error Exponent

We consider the Neyman-Pearson (NP) formulation, where

the detector is optimal at a fixed false-alarm probability. We

focus on the large-network scenario, where the number of

observations goes to infinity. Under Neyman-Pearson formu-

lation, for any positive level of the false alarm or the type-I

error probability, when the mis-detection or the type-II error

probability PM (n) of the NP detector decays exponentially

with the sample size n, we have the error exponent

D:= − lim
n→∞

1

n
logPM (n). (5)

In this paper, we are interested in evaluating the error exponent

in (5) for random networks under MRF hypotheses.

Given the node locations Vn = vn, let Dvn
denote

the Kullback-Leibler divergence between the conditional pdfs

f(yvn | G0(vn),H0) and f(yvn
| G1(vn),H1),

Dvn
:=

∫

yvn

log
f(yvn

|G0(vn),H0)

f(yvn
|G1(vn),H1)

f(yvn
|G0(vn),H0)dyvn

.(6)

In Section IV, we relate the error exponent D in (5) to the

KL-divergence in (6).

III. ERROR EXPONENT AS A GRAPH FUNCTIONAL

The binary hypothesis-testing problem defined in (1) in-

volves two different graphical models, each with its own

dependency graph and an associated likelihood function. The

optimal detection test is based on the log-likelihood ratio

(LLR). With the substitution of (2), it is given by

L(yv) := log
f(yv | G0(v),H0)

f(yv | G1(v),H1)
(7)

=
∑

a∈C1

ψ1,a(ya) −
∑

b∈C0

ψ0,b(yb) + log
Z1

Z0
.

Hence, the LLR is a functional on the two dependency graphs

G0 and G1.

The spectrum of the LLR [2], [4] is defined as the distribu-

tion of the normalized LLR evaluated under the null hypothesis

L(YVn
)

n
, [YVn

,Vn] under H0.

In [2], [4] it is proven that for Neyman-Pearson detection

under a fixed type-I error bound, the LLR spectrum can

fully characterize the type-II error exponent of the hypothesis-

testing system, and is independent of the type-I bound.

When LLR spectrum converges in probability to a constant

D, the error exponent D of NP detection in (5) is [4]

D = p lim
n→∞

1

n
L(YVn

), [YVn
,Vn] under H0, (8)

where p lim denotes the limit in probability, assuming it exists.



When YVn
are i.i.d. conditioned under both H0 and H1, the

result in (8) reduces to Stein’s lemma [3, Theorem 12.8.1] and

the limit in (8) is the node Kullback-Leibler (KL) divergence,

i.e., when YVi

i.i.d.
∼ gk under Hk,

D = DV1
:=

∫

y

log
g0(y)

g1(y)
g0(y)dy. (9)

In Section IV, we evaluate the error exponent for MRF

hypotheses through the limit in (8). Due to random node

placement and spatial dependence of the MRF hypotheses, the

error exponent in (8) is the limit of a random-graph functional,

and we can appeal to the LLN for graph functionals [12].

A. Acyclic Dependency Graphs

We consider the case when the dependency graphs under

either MRF hypothesis G0 and G1 are acyclic and also stabi-

lizing, such as the Euclidean nearest-neighbor graph.

Given a fixed set of points vn, the joint pdf of MRF for an

acyclic dependency graph G(vn) admits a factorization [14]

f(yvn
) =

∏

i∈vn

fi(yi)
∏

(i,j)∈G(vn)
i<j

fi,j(yi, yj)

fi(yi)fi(yj)
, (10)

where fi are the node marginal pdfs and fi,j are the pairwise

pdfs on the edges. Recall that instead of fixed node locations,

we have random locations Vn here, and hence, we consider the

conditional pdf f(yVn
|Hm,Gm(Vn)) under each hypothesis

Hm. From (10), for an acyclic dependency graph Gm(Vn), we

can specify the conditional pdf f(yVn
|Hm,Gm(Vn)) through

the conditional node pdfs fi(yi|Hm,Gm) and the conditional

pairwise edge pdfs fi,j(yi, yj |Hm,Gm).
We consider here a special form of spatial dependence in (4)

by having identical node marginal pdfs for all node locations

and edge marginal pdfs which are dependent only on the

respective edge lengths. Under hypothesis Hm, for m = 0, 1,

fi(yi | Gm,Hm) = gm(yi), i ∈ Vn, (11)

fi,j(yi, yj | Gm,Hm) = hm(yi, yj | Rij), (i, j) ∈ Gm, (12)

where gm is the node pdf and hm is the pairwise pdf at the

edges conditioned on Rij , the Euclidean length of edge (i, j).
By using (10), (11) and (12), we simplify (8) as

D = p lim
n→∞

1

n

[

∑

i∈Vn

log
g0(Yi)

g1(Yi)
+

∑

(i,j)∈G0

i<j

log
h0(Yi, Yj | Rij)

g0(Yi)g0(Yj)

−
∑

(i,j)∈G1

i<j

log
h1(Yi, Yj | Rij)

g1(Yi)g1(Yj)

]

, [YVn
,Vn] under H0, (13)

Note that the above expression is a graph functional, based on

the edge lengths of random graphs G0 and G1 with additional

randomness from the conditional distribution of the sensor

measurements given the edge lengths.

IV. DETECTION ERROR EXPONENT

In this section, we derive the error exponent for general

MRF hypotheses.

A. Testing Against Independence

We first provide the closed-form error exponent for the spe-

cial case when the null hypothesis has i.i.d. measurements with

no spatial dependence, f(yvn
|G0(vn),H0) =

∏

i∈vn
g0(yi).

Here, the dependency graph is trivial, G0 = ∅, and the error

exponent in (13) simplifies as

D = p lim
n→∞

1

n

[

−
∑

(i,j)∈G1

i<j

log
h1(Yi, Yj | Rij)

g1(Yi)g1(Yj)

+
∑

i∈Vn

log
g0(Yi)

g1(Yi)

]

, YVi

i.i.d.
∼ g0,

√

λ
n
Vi

i.i.d.
∼ τ. (14)

The above expression is a graph functional defined over

a marked point process, where the marks are the sensor

measurements YVi
drawn i.i.d from the pdf g0.

We can now appeal directly to the LLN for marked point

processes [12, Thm. 2.1] to simplify (14). Define a functional

on the edge lengths

ξ1(rij):=E

[

− log
h1(Yi, Yj)

g1(Yi)g1(Yj)

∣

∣

∣
Rij = rij ,H0

]

, (15)

= −

∫

yi

∫

yj

log
h1(yi, yj | Rij = rij)

g1(yi)g1(yj)
g0(yi)g0(yj)dyjdyi,

where the expectation is over the measurements conditioned

on the node locations.

ξ1 is said to satisfy moments condition of order p > 0 if

sup
n∈N

E [
∑

j∈N (0),j∈Vn

ξ1(R0j)
p] <∞, (16)

where N (0) denotes the neighbors of the origin in G1 and

the expectation is over the node locations. We require that

p = 1 or 2. In Section V, we prove that ξ1 satisfies the

moment condition for the Gaussian distribution under some

simple constraints on the covariance matrix.

Recall that Pλ is the homogeneous Poisson distribution on

R
2 with density λ. We now provide the result below.

Lemma 1 (Testing Acyclicity Against Independence):

When ξ1 satisfies the moments condition in (16), the error

exponent for testing against independence has the form

D = DV1
+

1

2

∫

Q1

E

[

∑

j:(0,j)∈G1(Pλτ(x)∪{0})

ξ1(R0j)
]

τ(x)dx,

(17)

where DV1
is the node KL-divergence given by (9).

Proof: The first term follows from LLN for i.i.d variables.

For the second term, ξ1 is a stabilizing functional since it is

a functional of edges of a stabilizing graph G1 and bounded-

moments condition in (16) holds. Hence, the LLN in [12]



guarantees L2 convergence to the above constant, which in

turn implies convergence in probability. 2

Remark 1: When the node locations are uniform (τ(x) ≡
1), the error exponent in (17) simplifies as

D = DV1
+

1

2
E

[

∑

j:(0,j)∈G1(Pλ∪{0})

ξ1(R0j)]. (18)

B. General Hypothesis Testing

In this section, we extend the results to any general distri-

bution under the null hypothesis. For such cases, we cannot

directly use the LLN for marked point process to evaluate (13),

since the marks are required to be i.i.d. for the LLN to hold.

We now additionally assume uniform integrability [13,

(16.21)] to convert the functional on a marked point process

in (8) to a functional on an unmarked process. In Section

V, we show that the Gaussian distribution satisfies uniform

integrability.

Proposition 1 (Uniform Integrability): When the normal-

ized spectrum, given by the sequence { 1
n
L(YVn

)}n≥1 is

uniformly integrable and converges in probability under H0,

the error exponent in (8) is the KL-divergence rate,

D = lim
n→∞

DVn

n
, (19)

= p lim
n→∞

1

n

[

∑

a∈C1

E(ψ1,a(Ya) | Vn,H0)

−
∑

b∈C0

E(ψ0,b(Yb) | Vn,H0) + log
Z1(Vn)

Z0(Vn)

]

, (20)

where DVn
is the KL-divergence in (6), ψi,c is potential of

clique c ∈ Ci of the MRF under hypothesis Hi in (7).

Proof: D = lim
n→∞

DVn

n
= lim

n→∞

1

n
E[L(YVn

) | H0], (21)

= p lim
n→∞

1

n
E[L(YVn

) | Vn,H0]. (22)

Now evaluating the conditional expectation using the form of

LLR for a MRF in (7), we have the result.

Hence, we have (20), which is a functional on an unmarked

process. Since the clique potential functions in (20) are pa-

rameterized by the node locations, (20) is a functional over

a random graph. Note that we do not need the dependency

graphs to be acyclic for the above result. We now specialize

the above result for acyclic dependency graphs.

Lemma 2 (Acyclic Graphs): For acyclic graphs G0 and G1,

D =DV1
+ p lim

n→∞

1

n

[

∑

(i,j)∈G1\G0

i<j

ξ1(Rij)

+
∑

(i,j)∈G0∩G1

i<j

ξ2(Rij)
∑

(i,j)∈G0\G1

i<j

ξ3(Rij)
]

, (23)

where DV1
and ξ1 are given by (9) and (15), and the edge

functionals ξ2 and ξ3 are defined as

ξ2(rij):=E

[

log
h0(Yi, Yj|Rij=rij)

h1(Yi, Yj|Rij=rij)

∣

∣

∣
Rij=rij ,H0

]

−2DV1
(24)

ξ3(rij):=I(Yi;Yj | Rij= rij ,H0), (25)

where I(X;Y ) is mutual information between X and Y and

I(X;Y | Z = z) is mutual information conditioned on Z = z.

Proof: From (13) and Proposition 1. 2

We now provide the error exponent for MRF hypotheses.

Theorem 1 (Exponent For Stabilizing Acyclic Graphs):

When ξi for i = 1, 2, 3 satisfy the bounded-moments

condition in (16), the error exponent for stabilizing acyclic

dependency graphs is given by

D = DV1
+

1

2

3
∑

i=1

∫

Q1

E





∑

j:(0,j)∈Ei,τ(x)

ξi(R0j)



 τ(x)dx, (26)

where E1,τ(x):=G1\G0(Pλτ(x) ∪ {0}), E2,τ(x):=G0 ∩
G1(Pλτ(x) ∪ {0}), and E3,τ(x):=G0\G1(Pλτ(x) ∪ {0}).

Proof: Since G0 and G1 are stabilizing, its subgraphs with

edges Ei,τ(x) for i = 1, 2, 3 can be shown to be stabilizing.

The moments condition in (16) holds. Hence, the LLN follows.

2

Remark 2: When the node locations are uniform (τ(x) ≡
1), the error exponent in (26) simplifies as

D = DV1
+

1

2

3
∑

i=1

E

∑

j:(0,j)∈Ei,1

ξi(R0j). (27)

V. GAUSSIAN DISTRIBUTION ON ACYCLIC GRAPHS

In this section, we simplify the results of the previous

section on acyclic graphs when the distribution under each

hypothesis Hm is Gaussian N (µm,Σm,vn
), given the node

locations Vn = vn. In this case, the MRF factorization in (2)

leads to a special relationship between the coefficients of the

covariance matrix and its inverse, called the potential matrix

. Specifically, there is a one-to-one correspondence between

the non-zero elements of the potential matrix Σ−1
m,vn

and

the dependency graph edges Gm(vn). Moreover, for acyclic

graphs Gm(vn), further simplifications are possible [11, Thm.

1].

The additional constraints of spatial dependence for acyclic

graphs in (11) and (12) imply that under each hypothesis,

the mean and the variance at all the nodes are equal and

that the correlation coefficient between any two neighboring

nodes is only dependent on the inter-node distance, i.e.,

under hypothesis Hm, for m = 0, 1, we have µm = µmI,

Σm,vn
(i, i, ) = σ2

m, and for (i, j) ∈ Gm(vn), we have

Σm,vn
(i, j) = ρm(Rij)σ

2
m. Here, the correlation function

ρm(·) < 1 is positive and monotonically decreasing in the

edge length, for each m = 0, 1.



With the above assumptions, the covariance matrix under

hypothesis Hm is given by

Σm,vn
(i, j) =







σ2
m > 0, i = j, (28a)

σ2
m

∏

(a,b)∈Path(i,j;Gm(vn))

ρm(Ra,b), o.w. (28b)

where Path(i, j;Gm(vn)) is the set of edges of the acyclic

graph Gm(vn) belonging to the unique path2 connecting the

nodes i and j. It can be shown that Σm,vn
in (28) is positive

definite for any node configuration vn when ρm(·) < 1.

Under the above assumptions, we now provide closed-

form expression for the Gaussian error exponent. Recall that

Path(0, j;G0) denotes the set of edges in G0 connecting the

origin 0 with some node j. Let ∆µ:=µ1 − µ0, K:=
σ2
1

σ2
0
.

Theorem 2 (Gaussian Error Exponent): For Gaussian dis-

tribution under each hypothesis, the error exponent is given

by (26), with the terms simplifying as

DV1
=

1

2

(

log(K) +
1

K
− 1 +

∆µ2

σ2
1

)

, (29)

ξ1(R0j) =

ρ1(R0j)[ρ1(R0j) −
∏

(k,l)∈Path(0,j;G0(Pλτ(x)∪0))

ρ0(Rkl)]

[1 − ρ2
1(R0j)]K

+
log[1 − ρ2

1(R0j)]

2
, (30)

ξ2(R0j) =
ρ1(R0j)[ρ1(R0j) − ρ0(R0j)]

[1 − ρ2
1(R0j)]K

+
1

2
log

1 − ρ2
1(R0j)

1 − ρ2
0(R0j)

−
∆µ2ρ1(R0j)

σ2
1(1 + ρ1(R0j))

, (31)

ξ3(R0j) = −
log[1 − ρ2

0(R0j)]

2
. (32)

Proof: From [11, Thm. 1], we have the expressions for de-

terminant and potential matrix coefficients for acyclic graphs,

and we use them to simplify terms in the error exponent.

The moments condition in (16) holds for ξm for m = 1, 2, 3
since the terms are bounded for correlation functions ρk(Rij)
which are decreasing in edge lengths and ρk(0) < 1. For

uniform integrability [13, (16.21)] of normalized spectrum, it

is sufficient to show that for any n > 0

lim
α→∞

∫

|yT (Σ−1

0 −Σ−1

1 )y|≥nα

1

n
|yT (Σ−1

0 −Σ−1
1 )y| exp [−

yT Σ−1
0 y

2
]dy = 0

From positive definiteness, this reduces to showing

lim
α→∞

∫

|yT (Σ−1

0 +Σ−1

1 )y|≥α

|yT (Σ−1
0 +Σ−1

1 )y| exp [−
yT Σ−1

0 y

2
]dy = 0,

which is true. 2

2Σm,vn (i, j) = 0 if no path exists between i and j in Gm.

VI. CONCLUSION

In this paper, we considered hypothesis testing of spatially-

dependent Markov random field observations collected from

randomly located sensors. We derived the error exponent by

appealing to the law of large number results for random graph

functionals. This allows us to study the influence on the node

placement distribution on the error exponent. In [15], [16],

we addressed the issue of energy consumption for routing

measurements for testing of MRF hypotheses, and proposed

energy-efficient fusion schemes. In future, we plan to build on

these works to investigate efficient node placement strategies

that maximize the error exponent as well as meet energy

constraints.
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