Opportunistic Spectrum Access with Multiple Users: Learning under Competition

Anima Anandkumar1 \quad Nithin Michael2 \quad Ao Tang2

1EECS, Massachusetts Institute of Technology, Cambridge, MA. USA

2ECE, Cornell University, Ithaca, NY. USA

IEEE INFOCOM 2010
Introduction: Cognitive Radio Network

Two types of users

- **Primary Users**
 - Priority for channel access

- **Secondary or Cognitive Users**
 - Opportunistic access
 - Channel sensing abilities

Limitations of secondary users

- **Sensing constraints**: Sense only part of spectrum at any time
- **Lack of coordination**: Collisions among secondary users
- **Unknown behavior of primary users**: Lost opportunities

Maximize total secondary throughput subject to above constraints
Distributed Learning and Access

- Slotted tx. with U cognitive users and $C > U$ channels
- **Channel Availability for Cognitive Users**: Mean availability μ_i for channel i and $\mu = [\mu_1, \ldots, \mu_C]$.
- μ unknown to secondary users: learning through sensing samples
- No explicit communication/cooperation among cognitive users

Objectives for secondary users
- Users ultimately access orthogonal channels with best availabilities μ
- Max. Total Cognitive System Throughput \equiv Min. Regret
Distributed Learning and Access

No. of channels C

$\mu^*_1 > \mu^*_2 > \cdots > \mu^*_C$

- Slotted tx. with U cognitive users and $C > U$ channels
- **Channel Availability for Cognitive Users:** Mean availability μ_i for channel i and $\mu = [\mu_1, \ldots, \mu_C]$.
- μ unknown to secondary users: learning through sensing samples
- No explicit communication/cooperation among cognitive users

Objectives for secondary users
- Users ultimately access orthogonal channels with best availabilities μ
- Max. Total Cognitive System Throughput \equiv Min. Regret
Distributed Learning and Access

- Slotted tx. with U cognitive users and $C > U$ channels
- **Channel Availability for Cognitive Users:** Mean availability μ_i for channel i and $\mu = [\mu_1, \ldots, \mu_C]$.
- μ unknown to secondary users: *learning through sensing samples*
- No explicit communication/cooperation among cognitive users

Objectives for secondary users
- Users ultimately access orthogonal channels with best availabilities μ
- Max. Total Cognitive System Throughput \equiv Min. Regret
Propose two distributed learning+access policies: ρ^{PRE} and ρ^{RAND}

- ρ^{PRE}: under pre-allocated ranks among cognitive users
- ρ^{RAND}: fully distributed and no prior information

Provable guarantees on sum regret under two policies

- Convergence to optimal configuration
- Regret grows slowly in no. of access slots $R(n) \sim O(\log n)$

Lower bound for any uniformly-good policy: also logarithmic in no. of access slots $R(n) \sim \Omega(\log n)$

We propose order-optimal distributed learning and allocation policies
Related Work

Multi-armed Bandits

- Single cognitive user (Lai & Robbins 85)
- Multiple users with centralized allocation (Ananthram et. al 87)

 Key Result: Regret $R(n) \sim O(\log n)$ and optimal as $n \to \infty$
- Auer et. al. 02: order optimality for sample mean policies

Cognitive Medium Access & Learning

- Liu et. al. 08: Explicit communication among users
- Li 08: Q-learning, Sensing all channels simultaneously
- Liu & Zhao 10: Learning under time division access
- Gai et. al. 10: Combinatorial bandits, centralized learning
Outline

1. Introduction

2. System Model & Recap of Bandit Results

3. Proposed Algorithms & Lower Bound

4. Simulation Results

5. Conclusion
System Model

Primary and Cognitive Networks

- Slotted tx. with U cognitive users and C channels
- Primary Users: IID tx. in each slot and channel

 Channel Availability for Cognitive Users: In each slot, IID with prob. μ_i for channel i and $\bm{\mu} = [\mu_1, \ldots, \mu_C]$.

- Perfect Sensing: Primary user always detected
- Collision Channel: tx. successful only if sole user
- Equal rate among secondary users:
 Throughput \equiv total no. of successful tx.

![Diagram of channels with μ_1, μ_2, ..., μ_C]
Problem Formulation

Distributed Learning Through Sensing Samples
- No information exchange/coordination among secondary users
- All secondary users employ same policy

Throughput under perfect knowledge of μ and coordination

$$S^*(n; \mu, U) := n \sum_{j=1}^{U} \mu(j^*)$$

where j^* is j^{th} largest entry in μ and n: no. of access slots

Regret under learning and distributed access policy ρ

Loss in throughput due to learning and collisions

$$R(n; \mu, U, \rho) := S^*(n; \mu, U) - S(n; \mu, U, \rho)$$

Max. Throughput \equiv Min. Sum Regret
Single Cognitive User: Multi-armed Bandit

Exploration vs. Exploitation Tradeoff

- Exploration: channels with good availability are not missed
- Exploitation: obtain good throughput

Explore in the beginning and exploit in the long run
Single Cognitive User: Multi-armed Bandit

No. of channels C

$\mu_1^* > \mu_2^* > \mu_{C-1}^* > \mu_C^*$

Exploration vs. Exploitation Tradeoff

- Exploration: channels with good availability are not missed
- Exploitation: obtain good throughput

Explore in the beginning and exploit in the long run
Single Cognitive User: Multi-armed Bandit

- **No. of channels** C

- $\mu_1^* > \mu_2^* > \mu_{C-1}^* > \mu_C^*$

Exploration vs. Exploitation Tradeoff

- Exploration: channels with good availability are not missed
- Exploitation: obtain good throughput

Explore in the beginning and exploit in the long run
Single Cognitive User: Multi-armed Bandit (Contd.)

- $T_{i,j}(n)$: no. of slots where user j selects channel i
- $\overline{X}_{i,j}(T_{i,j}(n))$: sample mean availability of channel i acc. to user j

Two Policies based on Sample Mean (Auer et. al. 02)

- **Deterministic Policy:** Select channel with highest g-statistic:

 \[
g_j(i; n) := \overline{X}_{i,j}(T_{i,j}(n)) + \sqrt{\frac{2 \log n}{T_{i,j}(n)}}
 \]

- **Randomized Greedy Policy:** Select channel with highest $\overline{X}_{i,j}(T_{i,j}(n))$ with prob. $1 - \epsilon_n$ and with prob. ϵ_n unif. select other channels, where

 \[
 \epsilon_n := \min[\frac{\beta}{n}, 1]
 \]

Regret under the two policies is $O(\log n)$ for n no. of access slots
Overview of Two Proposed Algorithms

ρ^{PRE} Pre-allocation Policy: ranks are pre-assigned

If user j is assigned rank w_j, select channel with w_j^{th} highest $\overline{X}_{i,j}(T_{i,j}(n))$ with prob. $1 - \epsilon_n$ and with prob. ϵ_n unif. select other channels, where $\epsilon_n := \min[\beta, 1]$

ρ^{RAND} Random allocation Policy: no prior information

User adaptively chooses rank w_j based on feedback for successful tx.

- If collision in previous slot, draw a new w_j uniformly from 1 to U
- If no collision, retain the current w_j

Select channel with w_j^{th} highest entry:

$$g_j(i; n) := \overline{X}_{i,j}(T_{i,j}(n)) + \sqrt{\frac{2 \log n}{T_{i,j}(n)}}$$
Learning Under Pre-Allocation

If user j is assigned rank w_j, select channel with w_j^{th} highest $\bar{X}_{i,j}(T_{i,j}(n))$ with prob. $1 - \epsilon_n$ and with prob. ϵ_n unif. select other channels, where

$$\epsilon_n := \min\left[\frac{\beta}{n}, 1\right]$$

Regret: user does not select channel of pre-assigned rank

$$\mathbb{E}[T_{i,j}(n)] \leq \sum_{t=1}^{n-1} \frac{\epsilon_{t+1}}{C} + \sum_{t=1}^{n-1} (1 - \epsilon_{t+1}) \mathbb{P}[\mathcal{E}_{i,j}(n)], \ i \neq w_j^*,$$

where $\mathcal{E}_{i,j}(n)$ is the error event that w_j^{th} highest entry of $\bar{X}_{i,j}(T_{i,j}(n))$ is not same as $\mu_{w_j}^*$.
Regret Under Pre-allocation

Theorem (Regret Under ρ^{PRE} Policy)

No. of slots user j accesses channel $i \neq w_j^*$ other than pre-allocated channel under ρ^{PRE} satisfies

$$\mathbb{E}[T_{i,j}(n)] \leq \frac{\beta}{C} \log n + \delta, \quad \forall i = 1, \ldots, C, i \neq w_j^*,$$

when

$$\beta > \max[20, \frac{4}{\Delta_{\min}^2}],$$

where $\Delta_{\min} := \min_{i,j} |\mu_i - \mu_j|$ is minimum separation.

Logarithmic regret under ρ^{PRE}
Distributed Learning and Randomized Allocation ρ_{RAND}

User adaptively chooses rank w_j based on feedback for successful tx.
- If collision in previous slot, draw a new w_j uniformly from 1 to U
- If no collision, retain the current w_j

Select channel with w_j^th highest entry:

$$g_j(i; n) := \bar{X}_{i,j}(T_{i,j}(n)) + \sqrt{\frac{2 \log n}{T_{i,j}(n)}}$$

Upper Bound on Regret

$$R(n) \leq \frac{1}{U} \sum_{k=1}^{U} \mu(k^*) \left[\sum_{j=1}^{U} \sum_{i \in U-\text{worst}} \mathbb{E}[T_{i,j}(n) + M(n)] \right]$$

- U-best: top U channels. U-worst: remaining channels
- $\sum_{i \in U-\text{worst}} T_{i,j}(n)$: Time spent in U-worst channels by user j
- $M(n)$: No. of collisions in U-best channels
Theorem

Under ρ^RAND Policy, $E\left[\sum_{i \in U\text{-worst}} T_{i,j}(n)\right]$ and $E[M(n)]$ are $O(\log n)$ and hence, regret is $O(\log n)$ where n is the number of access slots.

Proof for $E[M(n)]$: no. of collisions in U-best channels

- Bound $E[M(n)]$ under perfect knowledge of μ as $\Pi(U)$
- Good state: all users estimate order of top-U channels correctly
- Transition from bad to good state: $\Pi(U)$ avg. no. of collisions
- Bound on no. of slots spent in bad state
Lower Bound on Regret

Uniformly good policy ρ

A policy which enables users to ultimately settle down in orthogonal best channels under any channel availabilities μ: user j spends most of time in $i \in U$-best channel

$$\mathbb{E}_{\mu}[n - T_{i,j}(n)] = o(n^{\alpha}), \quad \forall \alpha > 0, \mu \in (0, 1)^C.$$

Satisfied by ρ^{PRE} and ρ^{RAND} policies

Theorem (Lower Bound for Uniformly Good Policy)

The sum regret satisfies

$$\liminf_{n \to \infty} \frac{R(n; \mu, U, \rho)}{\log n} \geq \sum_{i \in U\text{-worst}} \sum_{j=1}^{U} \frac{\Delta(U^*, i)}{D(\mu_i, \mu_{j^*})}.$$

Order optimal regret under ρ^{PRE} and ρ^{RAND} policies
Outline

1. Introduction
2. System Model & Recap of Bandit Results
3. Proposed Algorithms & Lower Bound
4. Simulation Results
5. Conclusion
Simulation Results

Normalized regret $\frac{R(n)}{\log n}$ vs. n slots.

$U = 4$ users, $C = 9$ channels.

Probability of Availability $\mu = [0.1, 0.2, \ldots, 0.9]$.

Normalized regret $\frac{R(n)}{\log n}$ vs. U users.

$C = 9$ channels, $n = 2500$ slots.
Outline

1. Introduction
2. System Model & Recap of Bandit Results
3. Proposed Algorithms & Lower Bound
4. Simulation Results
5. Conclusion
Conclusion

Summary
- Considered maximizing total throughput of cognitive users under unknown channel availabilities and no coordination
- Proposed two algorithms which achieve order optimality
 \(\rho^{\text{PRE}} \) policy works under pre-allocated ranks
 \(\rho^{\text{RAND}} \) policy does not require prior information

Outlook
- Imperfect sensing: logarithmic regret still achievable
- No. of cognitive users unknown to the policy: logarithmic regret still achievable
- Cognitive users with different rates and objectives