Opportunistic Spectrum Access with Multiple Users: Learning under Competition

Anima Anandkumar¹ Nithin Michael² Ao Tang²

¹ EECS, Massachusetts Institute of Technology, Cambridge, MA. USA

²ECE, Cornell University, Ithaca, NY. USA

IEEE INFOCOM 2010

Introduction: Cognitive Radio Network

Two types of users

• Primary Users

Priority for channel access

• Secondary or Cognitive Users

◮ Opportunistic access ◮ Channel sensing abilities

Limitations of secondary users

- Sensing constraints: Sense only part of spectrum at any time
- Lack of coordination: Collisions among secondary users
- Unknown behavior of primary users: Lost opportunities

Maximize total secondary throughput subject to above constraints

Distributed Learning and Access

- Slotted tx. with U cognitive users and $C > U$ channels
- Channel Availability for Cognitive Users: Mean availability μ_i for channel i and $\boldsymbol{\mu} = [\mu_1, \ldots, \mu_C]$.
- \bullet μ unknown to secondary users: learning through sensing samples
- No explicit communication/cooperation among cognitive users

Objectives for secondary users

- \bullet Users ultimately access orthogonal channels with best availabilities μ
- Max. Total Cognitive System Throughput \equiv Min. Regret

Distributed Learning and Access

- Slotted tx. with U cognitive users and $C > U$ channels
- Channel Availability for Cognitive Users: Mean availability μ_i for channel i and $\boldsymbol{\mu} = [\mu_1, \ldots, \mu_C]$.
- \bullet μ unknown to secondary users: learning through sensing samples
- No explicit communication/cooperation among cognitive users

Objectives for secondary users

- \bullet Users ultimately access orthogonal channels with best availabilities μ
- Max. Total Cognitive System Throughput \equiv Min. Regret

Distributed Learning and Access

- Slotted tx. with U cognitive users and $C > U$ channels
- Channel Availability for Cognitive Users: Mean availability μ_i for channel i and $\boldsymbol{\mu} = [\mu_1, \ldots, \mu_C]$.
- \bullet μ unknown to secondary users: learning through sensing samples
- No explicit communication/cooperation among cognitive users

Objectives for secondary users

- \bullet Users ultimately access orthogonal channels with best availabilities μ
- Max. Total Cognitive System Throughput \equiv Min. Regret

Summary of Results

Propose two distributed learning $+$ access policies: $\rho^{\text{\tiny PRE}}$ and $\rho^{\text{\tiny{RAND}}}$

- \blacktriangleright ρ^{PRE} : under pre-allocated ranks among cognitive users
- \blacktriangleright ρ^{RAND} : fully distributed and no prior information
- Provable guarantees on sum regret under two policies
	- \triangleright Convergence to optimal configuration
	- ► Regret grows slowly in no. of access slots $R(n) \sim O(\log n)$
- Lower bound for any uniformly-good policy: also logarithmic in no. of access slots $R(n) \sim \Omega(\log n)$

We propose order-optimal distributed learning and allocation policies

Related Work

Multi-armed Bandits

- Single cognitive user (Lai & Robbins 85)
- Multiple users with centralized allocation (Ananthram et. al 87) Key Result: Regret $R(n) \sim O(\log n)$ and optimal as $n \to \infty$
- Auer et. al. 02: order optimality for sample mean policies

Cognitive Medium Access & Learning

- Liu et. al. 08: Explicit communication among users
- Li 08: Q-learning, Sensing all channels simultaneously
- Liu & Zhao 10: Learning under time division access
- Gai et. al. 10: Combinatorial bandits, centralized learning

Outline

[Introduction](#page-1-0)

2 [System Model & Recap of Bandit Results](#page-7-0)

3 [Proposed Algorithms & Lower Bound](#page-14-0)

4 [Simulation Results](#page-21-0)

Ė

System Model

Primary and Cognitive Networks

- Slotted tx. with U cognitive users and C channels
- Primary Users: IID tx. in each slot and channel ◮ Channel Availability for Cognitive Users: In each slot, IID with prob. μ_i for channel i and $\mu = [\mu_1, \ldots, \mu_C]$.
- **Perfect Sensing:** Primary user always detected
- **Collision Channel: tx. successful only if sole user**
- Equal rate among secondary users: Throughput \equiv total no. of successful tx.

э

Problem Formulation

Distributed Learning Through Sensing Samples

- No information exchange/coordination among secondary users
- All secondary users employ same policy

Throughput under perfect knowledge of μ and coordination

$$
S^*(n; \mu, U) := n \sum_{j=1}^U \mu(j^*)
$$

where j^* is j^{th} largest entry in $\boldsymbol{\mu}$ and $n:$ no. of access slots

Regret under learning and distributed access policy ρ Loss in throughput due to learning and collisions

 $R(n; \mu, U, \rho) := S^*(n; \mu, U) - S(n; \mu, U, \rho)$

Max. Throughput \equiv Min. Sum Regret

Single Cognitive User: Multi-armed Bandit

Exploration vs. Exploitation Tradeoff

- Exploration: channels with good availability are not missed
- Exploitation: obtain good throughput

Explore in the beginning and exploit in the long run

Single Cognitive User: Multi-armed Bandit

Exploration vs. Exploitation Tradeoff

- Exploration: channels with good availability are not missed
- Exploitation: obtain good throughput

Explore in the beginning and exploit in the long run

Single Cognitive User: Multi-armed Bandit

Exploration vs. Exploitation Tradeoff

- Exploration: channels with good availability are not missed
- Exploitation: obtain good throughput

Explore in the beginning and exploit in the long run

Single Cognitive User: Multi-armed Bandit (Contd.)

- \bullet $T_{i,j}(n)$: no. of slots where user j selects channel i
- $\bullet \ \overline{X}_{i,j}(T_{i,j}(n))$: sample mean availability of channel i acc. to user j
- Two Policies based on Sample Mean (Auer et. al. 02)
	- \bullet Deterministic Policy: Select channel with highest g-statistic:

$$
g_j(i; n) := \overline{X}_{i,j}(T_{i,j}(n)) + \sqrt{\frac{2\log n}{T_{i,j}(n)}}
$$

• Randomized Greedy Policy: Select channel with highest $\overline{X}_{i,j}(T_{i,j}(n))$ with prob. $1 - \epsilon_n$ and with prob. ϵ_n unif. select other channels, where

$$
\epsilon_n:=\min[\frac{\beta}{n},1]
$$

Regret under the two policies is $O(\log n)$ for n no. of access slots

Outline

[Introduction](#page-1-0)

2 [System Model & Recap of Bandit Results](#page-7-0)

3 [Proposed Algorithms & Lower Bound](#page-14-0)

4 [Simulation Results](#page-21-0)

Overview of Two Proposed Algorithms

$\rho^{\text{\tiny PRE}}$ Pre-allocation Policy: ranks are pre-assigned

If user j is assigned rank w_j , select channel with $w^{\rm th}_j$ highest $X_{i,j}(T_{i,j}(n))$ with prob. $1 - \epsilon_n$ and with prob. ϵ_n unif. select other channels, where $\epsilon_n := \min[\frac{\beta}{n},1]$

 $\rho^{\text{\tiny{RAND}}}$ Random allocation Policy: no prior information User adaptively chooses rank w_i based on feedback for successful tx.

- **•** If collision in previous slot, draw a new w_i uniformly from 1 to U
- **If no collision, retain the current** w_i

Select channel with $w^{\scriptscriptstyle \text{th}}_j$ highest entry:

$$
g_j(i;n):=\overline{X}_{i,j}(T_{i,j}(n))+\sqrt{\frac{2\log n}{T_{i,j}(n)}}
$$

Learning Under Pre-Allocation

If user j is assigned rank w_j , select channel with $w^{\scriptscriptstyle\text{th}}_j$ highest $X_{i,j}(T_{i,j}(n))$ with prob. $1 - \epsilon_n$ and with prob. ϵ_n unif. select other channels, where

$$
\epsilon_n:=\min[\frac{\beta}{n},1]
$$

Regret: user does not select channel of pre-assigned rank

$$
\mathbb{E}[T_{i,j}(n)] \leq \sum_{t=1}^{n-1} \frac{\epsilon_{t+1}}{C} + \sum_{t=1}^{n-1} (1 - \epsilon_{t+1}) \mathbb{P}[\mathcal{E}_{i,j}(n)], \quad i \neq w_j^*,
$$

where $\mathcal{E}_{i,j}(n)$ is the error event that w^{th}_j highest entry of $\bar{X}_{i,j}(T_{i,j}(n))$ is not same as $\mu^*_{w_j}$

Regret Under Pre-allocation

Theorem (Regret Under $\rho^{\tiny \texttt{PRE}}$ Policy)

No. of slots user j accesses channel $i\neq w_j^*$ other than pre-allocated channel under ρ^{PRE} satisfies

$$
\mathbb{E}[T_{i,j}(n)] \leq \frac{\beta}{C} \log n + \delta, \quad \forall i = 1, \ldots, C, i \neq w_j^*,
$$

when

$$
\beta > \max[20, \frac{4}{\Delta_{\min}^2}],
$$

where
$$
\Delta_{\min} := \min_{i,j} |\mu_i - \mu_j|
$$
 is minimum separation.

Logarithmic regret under ρ^{PRE}

Distributed Learning and Randomized Allocation $\rho^{\scriptscriptstyle \sf{RAND}}$

User adaptively chooses rank w_i based on feedback for successful tx.

- **•** If collision in previous slot, draw a new w_i uniformly from 1 to U
- **If no collision, retain the current** w_i

Select channel with $w^{\scriptscriptstyle \text{th}}_j$ highest entry:

$$
g_j(i;n):=\overline{X}_{i,j}(T_{i,j}(n))+\sqrt{\frac{2\log n}{T_{i,j}(n)}}
$$

Upper Bound on Regret

$$
R(n) \leq \frac{1}{U}\sum_{k=1}^U \mu(k^*)\!\!\left[\sum_{j=1}^U\sum_{i\in U\text{-worst}}\!\!\!\mathbb{E}[T_{i,j}(n)+M(n)]\!\right]
$$

 \bullet U-best: top U channels. U-worst: remaining channels

- $\sum\,T_{i,j}(n)$: Time spent in U -worst channels by user j i∈U-worst
- \bullet $M(n)$: No. of collisions in U-best channels

Distributed Learning and Randomized Allocation $\rho^{\scriptscriptstyle \sf{RAND}}$

Theorem

Under ρ^{RAND} Policy, $\mathbb{E}[\sum T_{i,j}(n)]$ and $\mathbb{E}[M(n)]$ are $O(\log n)$ and hence, i∈U-worst regret is $O(\log n)$ where n is the number of access slots.

Proof for $\mathbb{E}[M(n)]$: no. of collisions in U-best channels

- Bound $\mathbb{E}[M(n)]$ under perfect knowledge of μ as $\Pi(U)$
- \bullet Good state: all users estimate order of top- U channels correctly
- **•** Transition from bad to good state: $\Pi(U)$ avg. no. of collisions
- Bound on no. of slots spent in bad state

Lower Bound on Regret

Uniformly good policy ρ

A policy which enables users to ultimately settle down in orthogonal best channels under any channel availabilities μ : user j spends most of time in $i \in U$ -best channel

$$
\mathbb{E}_{\boldsymbol{\mu}}[n-T_{i,j}(n)] = o(n^{\alpha}), \quad \forall \alpha > 0, \boldsymbol{\mu} \in (0,1)^C.
$$

Satisfied by $\rho^{\text{\tiny PRE}}$ and $\rho^{\text{\tiny{RAND}}}$ policies

Theorem (Lower Bound for Uniformly Good Policy) The sum regret satisfies

$$
\liminf_{n\to\infty}\frac{R(n;\mu,U,\rho)}{\log n}\geq \sum_{i\in U\text{-worst}}\sum_{j=1}^U\frac{\Delta(U^*,i)}{D(\mu_i,\mu_{j^*})}.
$$

Order optimal regret under ρ^{PRE} and ρ^{RAND} policies

Outline

[Introduction](#page-1-0)

2 [System Model & Recap of Bandit Results](#page-7-0)

3 [Proposed Algorithms & Lower Bound](#page-14-0)

4 [Simulation Results](#page-21-0)

Simulation Results

Outline

[Introduction](#page-1-0)

2 [System Model & Recap of Bandit Results](#page-7-0)

3 [Proposed Algorithms & Lower Bound](#page-14-0)

4 [Simulation Results](#page-21-0)

Conclusion

Summary

- Considered maximizing total throughput of cognitive users under unknown channel availabilities and no coordination
- Proposed two algorithms which achieve order optimality

 $\rho^{\textsf{PRE}}$ policy works under pre-allocated ranks

 $\rho^{\text{\tiny{RAND}}}$ policy does not require prior information

Outlook

- Imperfect sensing: logarithmic regret still achievable
- No. of cognitive users unknown to the policy: logarithmic regret still achievable
- Cognitive users with different rates and objectives