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Introduction: Cognitive Radio Network

Two types of users

Primary Users
◮ Priority for channel access

Secondary or Cognitive Users
◮ Opportunistic access
◮ Channel sensing abilities

Primary User
Secondary User

Limitations of secondary users

Sensing constraints: Sense only part of spectrum at any time

Lack of coordination: Collisions among secondary users

Unknown behavior of primary users: Lost opportunities

Maximize total secondary throughput subject to above constraints
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Distributed Learning and Access

No. of channels C

µ1 µ2 µC

Slotted tx. with U cognitive users and C > U channels

Channel Availability for Cognitive Users: Mean availability µi for
channel i and µ = [µ1, . . . , µC ].

µ unknown to secondary users: learning through sensing samples

No explicit communication/cooperation among cognitive users

Objectives for secondary users

Users ultimately access orthogonal channels with best availabilities µ

Max. Total Cognitive System Throughput ≡ Min. Regret
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Summary of Results

Propose two distributed learning+access policies: ρPRE and ρRAND

◮ ρPRE: under pre-allocated ranks among cognitive users
◮ ρRAND: fully distributed and no prior information

Provable guarantees on sum regret under two policies
◮ Convergence to optimal configuration
◮ Regret grows slowly in no. of access slots R(n) ∼ O(log n)

Lower bound for any uniformly-good policy: also logarithmic in no. of
access slots R(n) ∼ Ω(log n)

We propose order-optimal distributed learning and allocation policies
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Related Work

Multi-armed Bandits

Single cognitive user (Lai & Robbins 85)

Multiple users with centralized allocation (Ananthram et. al 87)
Key Result: Regret R(n) ∼ O(log n) and optimal as n → ∞

Auer et. al. 02: order optimality for sample mean policies

Cognitive Medium Access & Learning

Liu et. al. 08: Explicit communication among users

Li 08: Q-learning, Sensing all channels simultaneously

Liu & Zhao 10: Learning under time division access

Gai et. al. 10: Combinatorial bandits, centralized learning
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System Model

Primary and Cognitive Networks

Slotted tx. with U cognitive users and C channels

Primary Users: IID tx. in each slot and channel
◮ Channel Availability for Cognitive Users: In each slot, IID with prob.

µi for channel i and µ = [µ1, . . . , µC ].

Perfect Sensing: Primary user always detected

Collision Channel: tx. successful only if sole user

Equal rate among secondary users:
Throughput ≡ total no. of successful tx.

No. of channels C

µ1 µ2 µC
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Problem Formulation

Distributed Learning Through Sensing Samples

No information exchange/coordination among secondary users

All secondary users employ same policy

Throughput under perfect knowledge of µ and coordination

S∗(n; µ, U) := n

U
∑

j=1

µ(j∗)

where j∗ is jth largest entry in µ and n: no. of access slots

Regret under learning and distributed access policy ρ

Loss in throughput due to learning and collisions

R(n; µ, U, ρ) := S∗(n; µ, U) − S(n; µ, U, ρ)

Max. Throughput ≡ Min. Sum Regret
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Single Cognitive User: Multi-armed Bandit

No. of channels C

µ1 µ2 µC−1 µC

Exploration vs. Exploitation Tradeoff

Exploration: channels with good availability are not missed

Exploitation: obtain good throughput

Explore in the beginning and exploit in the long run
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Single Cognitive User: Multi-armed Bandit (Contd.)

Ti,j(n): no. of slots where user j selects channel i

X i,j(Ti,j(n)): sample mean availability of channel i acc. to user j

Two Policies based on Sample Mean (Auer et. al. 02)

Deterministic Policy: Select channel with highest g-statistic:

gj(i; n) := Xi,j(Ti,j(n)) +

√

2 log n

Ti,j(n)

Randomized Greedy Policy: Select channel with highest Xi,j(Ti,j(n))
with prob. 1− ǫn and with prob. ǫn unif. select other channels, where

ǫn := min[
β

n
, 1]

Regret under the two policies is O(log n) for n no. of access slots

Anandkumar et al. (MIT,Cornell) Spectrum Access INFOCOM ‘10 10 / 21



Outline

1 Introduction

2 System Model & Recap of Bandit Results

3 Proposed Algorithms & Lower Bound

4 Simulation Results

5 Conclusion

Anandkumar et al. (MIT,Cornell) Spectrum Access INFOCOM ‘10 11 / 21



Overview of Two Proposed Algorithms

ρPRE Pre-allocation Policy: ranks are pre-assigned

If user j is assigned rank wj , select channel with wth
j highest Xi,j(Ti,j(n))

with prob. 1 − ǫn and with prob. ǫn unif. select other channels, where
ǫn := min[β

n
, 1]

ρRAND Random allocation Policy: no prior information

User adaptively chooses rank wj based on feedback for successful tx.

If collision in previous slot, draw a new wj uniformly from 1 to U

If no collision, retain the current wj

Select channel with wth
j highest entry:

gj(i; n) := X i,j(Ti,j(n)) +

√

2 log n

Ti,j(n)
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Learning Under Pre-Allocation

If user j is assigned rank wj , select channel with wth
j highest Xi,j(Ti,j(n))

with prob. 1 − ǫn and with prob. ǫn unif. select other channels, where

ǫn := min[
β

n
, 1]

Regret: user does not select channel of pre-assigned rank

E[Ti,j(n)] ≤
n−1
∑

t=1

ǫt+1

C
+

n−1
∑

t=1

(1 − ǫt+1)P[Ei,j(n)], i 6= w∗

j ,

where Ei,j(n) is the error event that wth
j highest entry of X̄i,j(Ti,j(n)) is

not same as µ∗

wj
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Regret Under Pre-allocation

Theorem (Regret Under ρPRE Policy)

No. of slots user j accesses channel i 6= w∗

j other than pre-allocated

channel under ρPRE satisfies

E[Ti,j(n)] ≤
β

C
log n + δ, ∀i = 1, . . . , C, i 6= w∗

j ,

when

β > max[20,
4

∆2
min

],

where ∆min := min
i,j

|µi − µj | is minimum separation.

Logarithmic regret under ρPRE
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Distributed Learning and Randomized Allocation ρRAND

User adaptively chooses rank wj based on feedback for successful tx.

If collision in previous slot, draw a new wj uniformly from 1 to U

If no collision, retain the current wj

Select channel with wth
j highest entry:

gj(i; n) := X i,j(Ti,j(n)) +

√

2 log n

Ti,j(n)

Upper Bound on Regret

R(n) ≤
1

U

U
∑

k=1

µ(k∗)





U
∑

j=1

∑

i∈U -worst

E[Ti,j(n) + M(n)]





U -best: top U channels. U -worst: remaining channels
∑

i∈U -worst

Ti,j(n): Time spent in U -worst channels by user j

M(n): No. of collisions in U -best channels
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Distributed Learning and Randomized Allocation ρRAND

Theorem

Under ρRAND Policy, E[
∑

i∈U -worst

Ti,j(n)] and E[M(n)] are O(log n) and hence,

regret is O(log n) where n is the number of access slots.

Proof for E[M(n)]: no. of collisions in U -best channels

Bound E[M(n)] under perfect knowledge of µ as Π(U)

Good state: all users estimate order of top-U channels correctly

Transition from bad to good state: Π(U) avg. no. of collisions

Bound on no. of slots spent in bad state
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Lower Bound on Regret

Uniformly good policy ρ

A policy which enables users to ultimately settle down in orthogonal best
channels under any channel availabilities µ: user j spends most of time in
i ∈ U -best channel

Eµ[n − Ti,j(n)] = o(nα), ∀α > 0, µ ∈ (0, 1)C .

Satisfied by ρPRE and ρRAND policies

Theorem (Lower Bound for Uniformly Good Policy)

The sum regret satisfies

lim inf
n→∞

R(n; µ, U, ρ)

log n
≥

∑

i∈U -worst

U
∑

j=1

∆(U∗, i)

D(µi, µj∗)
.

Order optimal regret under ρPRE and ρRAND policies
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Simulation Results
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Distributed Lower Bnd

Centralized Lower Bnd

Normalized regret
R(n)
log n

vs. n slots.

U = 4 users, C = 9 channels.
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Normalized regret
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vs. U users.

C = 9 channels, n = 2500 slots.

Probability of Availability µ = [0.1, 0.2, . . . , 0.9].
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Conclusion

Summary

Considered maximizing total throughput of cognitive users under
unknown channel availabilities and no coordination

Proposed two algorithms which achieve order optimality
◮ ρPRE policy works under pre-allocated ranks
◮ ρRAND policy does not require prior information

Outlook

Imperfect sensing: logarithmic regret still achievable

No. of cognitive users unknown to the policy: logarithmic regret still
achievable

Cognitive users with different rates and objectives
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