High-Dimensional Graphical Model Selection

Anima Anandkumar

U.C. Irvine

Joint work with Vincent Tan (U. Wisc.) and Alan Willsky (MIT).
Conditional Independence

\(X_A \perp X_B | X_S \)
Graphical Models: Definition

Conditional Independence

\[\mathbf{X}_A \perp \mathbf{X}_B | \mathbf{X}_S \]

Factorization

\[P(\mathbf{x}) \propto \exp \left[\sum_{(i,j) \in G} \Psi_{i,j}(x_i, x_j) \right]. \]
Graphical Models: Definition

Conditional Independence

\[\mathbf{X}_A \perp \perp \mathbf{X}_B | \mathbf{X}_S \]

Factorization

\[P(\mathbf{x}) \propto \exp \left[\sum_{(i,j) \in G} \Psi_{i,j}(x_i, x_j) \right] . \]

Tree-Structured Graphical Models
Graphical Models: Definition

Conditional Independence

\[\mathbf{X}_A \independent \mathbf{X}_B | \mathbf{X}_S \]

Factorization

\[
\begin{align*}
P(\mathbf{x}) &\propto \exp \left[\sum_{(i,j) \in G} \Psi_{i,j}(x_i, x_j) \right].
\end{align*}
\]

Tree-Structured Graphical Models

\[
P(\mathbf{x}) = \prod_{i \in V} P_i(x_i) \prod_{(i,j) \in E} \frac{P_{i,j}(x_i, x_j)}{P_i(x_i)P_j(x_j)}
\]

\[
= P_1(x_1)P_{2|1}(x_2|x_1)P_{3|1}(x_3|x_1)P_{4|1}(x_4|x_1).
\]
Structure Learning of Graphical Models

- Graphical model on p nodes
- n i.i.d. samples from multivariate distribution
- Output estimated structure \hat{G}_n

Structural Consistency: $\lim_{n \to \infty} P \left[\hat{G}_n \neq G \right] = 0$.
Structure Learning of Graphical Models

- Graphical model on \(p \) nodes
- \(n \) i.i.d. samples from multivariate distribution
- Output estimated structure \(\hat{G}^n \)

Structural Consistency:

\[
\lim_{n \to \infty} P \left[\hat{G}^n \neq G \right] = 0.
\]

Challenge: High Dimensionality ("Data-Poor" Regime)

- Large \(p \), small \(n \) regime \((p \gg n)\)
- **Sample Complexity:** Required \# of samples to achieve consistency

Challenge: Computational Complexity

Goal: Address above challenges and provide provable guarantees
Tree Graphical Models: Tractable Learning

Maximum likelihood learning of tree structure

- Proposed by Chow and Liu (68)
- Max. weight spanning tree

\[\hat{T}_{ML} = \arg \max_T \sum_{k=1}^{n} \log P(x_V). \]
Tree Graphical Models: Tractable Learning

Maximum likelihood learning of tree structure

- Proposed by Chow and Liu (68)
- Max. weight spanning tree

\[\hat{T}_{\text{ML}} = \arg \max_T \sum_{k=1}^{n} \log P(x_V). \]

\[\hat{T}_{\text{ML}} = \arg \max_T \sum_{(i,j) \in T} \hat{I}^n(X_i; X_j). \]
Tree Graphical Models: Tractable Learning

Maximum likelihood learning of tree structure

- Proposed by **Chow and Liu (68)**
- Max. weight spanning tree

\[
\hat{T}_{ML} = \arg \max_T \sum_{k=1}^{n} \log P(x_V).
\]

\[
\hat{T}_{ML} = \arg \max_T \sum_{(i,j) \in T} \hat{I}^n(X_i; X_j).
\]

- **Pairwise** statistics suffice for ML
Tree Graphical Models: Tractable Learning

Maximum likelihood learning of tree structure

- Proposed by Chow and Liu (68)
- Max. weight spanning tree

\[\hat{T}_{ML} = \arg \max_T \sum_{k=1}^{n} \log P(x_V). \]

\[\hat{T}_{ML} = \arg \max_T \sum_{(i,j) \in T} \hat{I}^n(X_i; X_j). \]

- **Pairwise** statistics suffice for ML
- \textit{n} samples and \textit{p} nodes: Sample complexity: \(\frac{\log p}{n} = O(1). \)
Tree Graphical Models: Tractable Learning

Maximum likelihood learning of tree structure

- Proposed by Chow and Liu (68)
- Max. weight spanning tree

\[
\hat{T}_{ML} = \arg \max_T \sum_{k=1}^{n} \log P(x_V).
\]

\[
\hat{T}_{ML} = \arg \max_T \sum_{(i,j) \in T} \hat{I}^n(X_i; X_j).
\]

- Pairwise statistics suffice for ML
- \(n \) samples and \(p \) nodes: Sample complexity: \(\frac{\log p}{n} = O(1) \).

What other classes of graphical models are tractable for learning?
Learning Graphical Models Beyond Trees

Challenges

● Presence of cycles
 ▶ Pairwise statistics no longer suffice
 ▶ Likelihood function not tractable

\[P(x) = \frac{1}{Z} \exp \left[\sum_{(i,j) \in G} \Psi_{i,j}(x_i, x_j) \right]. \]
Learning Graphical Models Beyond Trees

Challenges

- Presence of cycles
 - Pairwise statistics no longer suffice
 - Likelihood function not tractable

\[
P(x) = \frac{1}{Z} \exp \left[\sum_{(i,j) \in G} \Psi_{i,j}(x_i, x_j) \right].
\]

- Presence of high-degree nodes
 - Brute-force search not tractable
Learning Graphical Models Beyond Trees

Challenges

- Presence of cycles
 - Pairwise statistics no longer suffice
 - Likelihood function not tractable

\[
P(x) = \frac{1}{Z} \exp \left[\sum_{(i,j) \in G} \Psi_{i,j}(x_i, x_j) \right].
\]

- Presence of high-degree nodes
 - Brute-force search not tractable

Can we provide learning guarantees under above conditions?
Learning Graphical Models Beyond Trees

Challenges

- **Presence of cycles**
 - Pairwise statistics no longer suffice
 - Likelihood function not tractable

\[
P(x) = \frac{1}{Z} \exp \left[\sum_{(i,j) \in G} \Psi_{i,j}(x_i, x_j) \right].
\]

- **Presence of high-degree nodes**
 - Brute-force search not tractable

Can we provide learning guarantees under above conditions?

Our Perspective: Tractable Graph Families

- Characterize the class of tractable families
- Incorporate all the above challenges
- Relevant for real datasets, e.g., social-network data
Related Work in Structure Learning

Algorithms for Structure Learning
- Chow and Liu (68)
- Meinshausen and Buehlmann (06)
- Bresler, Mossel and Sly (09)
- Ravikumar, Wainwright and Lafferty (10) …

Approaches Employed
- EM/Search approaches
- Combinatorial/Greedy approach
- Convex relaxation, …
Outline

1. Introduction

2. Tractable Graph Families

3. Structure Estimation in Graphical Models

4. Method and Guarantees

5. Conclusion
Intuitions: Conditional Mutual Information Test

Separators in Graphical Models

\[X_i \perp X_j \mid X_S \iff I(X_i; X_j \mid X_S) = 0 \]
Intuitions: Conditional Mutual Information Test

Separators in Graphical Models

\[X_i \perp X_j | X_S \iff I(X_i; X_j | X_S) = 0 \]

Observations

- Δ-separator for graphs with maximum degree Δ
 - Brute-force search for the separator: $\arg\min_{|S| \leq \Delta} I(X_i; X_j | X_S)$
 - Computational complexity scales as $O(p^\Delta)$
Intuitions: Conditional Mutual Information Test

Separators in Graphical Models

\[X_i \perp \!\!\! \perp X_j | X_S \iff I(X_i; X_j | X_S) = 0 \]

Observations

- Δ-separator for graphs with maximum degree Δ
 - Brute-force search for the separator: $\arg\min_{|S| \leq \Delta} I(X_i; X_j | X_S)$
 - Computational complexity scales as $O(p^\Delta)$
- Approximate separators in general graphs?
Intuitions: Conditional Mutual Information Test

Separators in Graphical Models

\[X_i \perp X_j | X_S \iff I(X_i; X_j | X_S) = 0 \]

Observations

- \(\Delta\)-separator for graphs with maximum degree \(\Delta\)
 - Brute-force search for the separator: \(\text{argmin}_{|S| \leq \Delta} I(X_i; X_j | X_S)\)
 - Computational complexity scales as \(O(p^\Delta)\)
- Approximate separators in general graphs?
Intuitions: Conditional Mutual Information Test

Separators in Graphical Models

\[X_i \not\perp\!
\perp X_j|X_S \quad \Rightarrow \quad I(X_i; X_j|X_S) \approx 0 \]

Observations

- \(\Delta \)-separator for graphs with maximum degree \(\Delta \)
 - Brute-force search for the separator: \(\text{argmin}_{|S| \leq \Delta} I(X_i; X_j|X_S) \)
 - Computational complexity scales as \(O(p^\Delta) \)
- Approximate separators in general graphs?
Tractable Graph Families: Local Separation

\(\gamma \)-Local Separator \(S_\gamma(i, j) \)

Minimal vertex separator with respect to paths of length less than \(\gamma \)

\((\eta, \gamma)\)-Local Separation Property for Graph \(G \)

\[|S_\gamma(i, j)| \leq \eta \text{ for all } (i, j) \notin G \]

Locally tree-like
- Erdős-Rényi graphs
- Power-law/scale-free graphs

Small-world Graphs
- Watts-Strogatz model
- Hybrid/augmented graphs
Setup: Ising and Gaussian Graphical Models

- n i.i.d. samples available for structure estimation
Setup: Ising and Gaussian Graphical Models

- n i.i.d. samples available for structure estimation
- Ising and Gaussian Graphical Models

\[P(x) \propto \exp \left[\frac{1}{2} x^T J_G x + h^T x \right], \quad x \in \{-1, 1\}^p. \]

\[f(x) \propto \exp \left[-\frac{1}{2} x^T J_G x + h^T x \right], \quad x \in \mathbb{R}^p. \]
Setup: Ising and Gaussian Graphical Models

- \(n \) i.i.d. samples available for structure estimation
- Ising and Gaussian Graphical Models

\[
P(x) \propto \exp \left[\frac{1}{2} x^T J_G x + h^T x \right], \quad x \in \{-1, 1\}^p.
\]

\[
f(x) \propto \exp \left[-\frac{1}{2} x^T J_G x + h^T x \right], \quad x \in \mathbb{R}^p.
\]

- For \((i, j) \in G \), \(J_{\text{min}} \leq |J_{i,j}| \leq J_{\text{max}} \)
Setup: Ising and Gaussian Graphical Models

- n i.i.d. samples available for structure estimation
- Ising and Gaussian Graphical Models

$$P(x) \propto \exp \left[\frac{1}{2} x^T J_G x + h^T x \right], \quad x \in \{-1, 1\}^p.$$

$$f(x) \propto \exp \left[-\frac{1}{2} x^T J_G x + h^T x \right], \quad x \in \mathbb{R}^p.$$

- For $(i, j) \in G$, $J_{\text{min}} \leq |J_{i,j}| \leq J_{\text{max}}$
- Graph G satisfies (η, γ) local separation property
Setup: Ising and Gaussian Graphical Models

- \(n \) i.i.d. samples available for structure estimation
- Ising and Gaussian Graphical Models

\[
P(x) \propto \exp \left[\frac{1}{2} x^T J_G x + h^T x \right], \quad x \in \{-1, 1\}^p.
\]

\[
f(x) \propto \exp \left[-\frac{1}{2} x^T J_G x + h^T x \right], \quad x \in \mathbb{R}^p.
\]

- For \((i, j) \in G\), \(J_{\min} \leq |J_{i,j}| \leq J_{\max}\)
- Graph \(G\) satisfies \((\eta, \gamma)\) local separation property

Tradeoff between \(\eta, \gamma, J_{\min}, J_{\max}\) for tractable learning
Regime of Tractable Learning

Efficient Learning Under Approximate Separation

- Maximum edge potential J_{max} of Ising model satisfies

\[J_{\text{max}} < J^*. \]

J^* is threshold for phase transition for conditional uniqueness.
Regime of Tractable Learning

Efficient Learning Under Approximate Separation

- Maximum edge potential J_{max} of Ising model satisfies
 \[J_{\text{max}} < J^*. \]

 J^* is threshold for phase transition for conditional uniqueness.

- Gaussian model is α-walk summable
 \[\| \overline{R}_G \| \leq \alpha < 1. \]

 \overline{R}_G is absolute partial correlation matrix.

 \[J_G = I - R_G. \]
Efficient Learning Under Approximate Separation

- Maximum edge potential J_{max} of Ising model satisfies

$$J_{\text{max}} < J^*. $$

J^* is threshold for phase transition for conditional uniqueness.

- Gaussian model is α-walk summable

$$\|\overline{R}_G\| \leq \alpha < 1.$$

\overline{R}_G is absolute partial correlation matrix.

$$J_G = I - R_G.$$

Tractable Parameter Regime for Structure Learning
Tractable Graph Families and Regimes

- Graph G satisfies (η, γ)-local separation property where
 \[\eta = O(1). \]
Graph G satisfies (η, γ)-local separation property where

$$\eta = O(1).$$

Maximum edge potential J_{max} satisfies

$$\alpha := \frac{\tanh J_{\text{max}}}{\tanh J^*} < 1 \text{ or } \|R_G\| \leq \alpha < 1.$$
Graph G satisfies (η, γ)-local separation property where

$$\eta = O(1).$$

Maximum edge potential J_{max} satisfies

$$\alpha := \frac{\tanh J_{\text{max}}}{\tanh J^*} < 1 \text{ or } \| \mathbf{R}_G \| \leq \alpha < 1.$$

Minimum edge potential J_{min} is sufficiently strong

$$\frac{J_{\text{min}}}{\alpha^\gamma} = \tilde{\omega}(1).$$
Graph G satisfies (η, γ)-local separation property where

$$\eta = O(1).$$

Maximum edge potential J_{max} satisfies

$$\alpha := \frac{\tanh J_{\text{max}}}{\tanh J^*} < 1 \text{ or } \|R_G\| \leq \alpha < 1.$$

Minimum edge potential J_{min} is sufficiently strong

$$\frac{J_{\text{min}}}{\alpha \gamma} = \tilde{\omega}(1).$$

Edge potentials are generic.
Example: girth g, maximum degree Δ

- **Structural criteria:** (η, γ)-local separation property is satisfied
 \[\eta = 1, \quad \gamma = g. \]

- **Parameter criteria:** The maximum edge potential satisfies
 \[J_{\text{max}} < J^* = \text{atanh}(\Delta^{-1}), \quad \alpha := \frac{\tanh J_{\text{max}}}{\tanh J^*}. \]

- **Tradeoff:** The minimum edge potential satisfies
 \[J_{\text{min}} \alpha^g = \omega(1). \]

 For example, when
 \[J_{\text{min}} = \Theta(\Delta^{-1}) \Rightarrow \Delta \alpha^g = o(1). \]

 Learnability regime involves a tradeoff between degree and girth.
Outline

1. Introduction

2. Tractable Graph Families

3. Structure Estimation in Graphical Models

4. Method and Guarantees

5. Conclusion
Algorithm for Structure Learning

Conditional Mutual Information Thresholding (CMIT)

- Empirical Conditional Mutual Information from samples
- Attempt to search for approx. separator of size η

$$(i, j) \in \hat{G} \text{ if } \min_{S \subset V \setminus \{i, j\}} \frac{\hat{I}(X_i; X_j|X_S)}{|S| \leq \eta} > \xi_{n,p}$$
Algorithm for Structure Learning

Conditional Mutual Information Thresholding (CMIT)

- Empirical Conditional Mutual Information from samples
- Attempt to search for approx. separator of size η

\[
(i, j) \in \hat{G} \text{ if } \min_{S \subseteq V \setminus \{i, j\}, |S| \leq \eta} \hat{I}(X_i; X_j | X_S) > \xi_{n,p}
\]

Threshold $\xi_{n,p}$

- Depends only on $\#$ of samples n and $\#$ of nodes p

\[
\xi_{n,p} = O(J_{\text{min}}^2) \cap \omega(\alpha^2 \gamma) \cap \Omega \left(\frac{\log p}{n} \right)
\]
Algorithm for Structure Learning

Conditional Mutual Information Thresholding (CMIT)

- Empirical Conditional Mutual Information from samples
- Attempt to search for approx. separator of size η

\[(i, j) \in \hat{G} \text{ if } \min_{S \subset V\setminus\{i,j\}, |S| \leq \eta} \hat{I}(X_i; X_j|X_S) > \xi_{n,p}\]

Threshold $\xi_{n,p}$

- Depends only on # of samples n and # of nodes p

\[\xi_{n,p} = O(J_{\min}^2) \cap \omega(\alpha^2) \cap \Omega \left(\frac{\log p}{n}\right).\]

Local Test Using Low-order Statistics
Guarantees on Conditional Mutual Information Test

\[(i, j) \in \hat{G} \text{ if } \min_{S \subset V \setminus \{i, j\}, |S| \leq \eta} \hat{I}(X_i; X_j | X_S) > \xi_{n,p}\]

- Ising/Gaussian graphical model on \(p\) nodes
- No. of samples \(n\) such that

\[n = \Omega(J_{\min}^{-4} \log p).\]

Theorem

CMIT is structurally consistent

\[\lim_{p, n \to \infty} \mathbb{P}\left[\hat{G}_p^m \neq G_p\right] = 0.\]

- Probability measure on both graph and samples
Lower Bound on Sample Complexity

Erdős-Rényi random graph \(G \sim \mathcal{G}(p, c/p) \)

Theorem

For any estimator \(\hat{G}_p^n \), it is necessary that

- Discrete distribution over \(\mathcal{X} \): \(n \geq \frac{c \log_2 p}{2 \log_2 |\mathcal{X}|} \)
- Gaussian with \(\alpha \)-walk summability: \(n \geq \frac{c \log_2 p}{\log_2 \left[2 \pi e \left(\frac{1}{1-\alpha} + 1 \right) \right]} \)

\[
\lim_{n \to \infty} P \left[\hat{G}_p^n \neq G_p \right] = 0.
\]

\(\Omega(c \log p) \) samples needed for random graph structure estimation.
Lower Bound on Sample Complexity

- Erdős-Rényi random graph $G \sim G(p, c/p)$

Theorem

For any estimator \hat{G}_p^n, it is necessary that

- Discrete distribution over X: $n \geq \frac{c \log_2 p}{2 \log_2 |X|}$
- Gaussian with α-walk summability: $n \geq \frac{c \log_2 p}{\log_2 \left[2\pi e \left(\frac{1}{1-\alpha} + 1\right)\right]}$

$$\lim_{n \to \infty} P \left[\hat{G}_p^n \neq G_p \right] = 0.$$

Proof Techniques

- Fano’s inequality over *typical* graphs
- Characterize typical graphs for Erdős-Rényi ensemble

$\Omega(c \log p)$ samples needed for random graph structure estimation.
Proof Ideas

\[(i, j) \in \hat{G} \text{ if } \min_{S \subset V \setminus \{i, j\}} \frac{|S| \leq \eta}{\hat{I}(X_i; X_j | X_S)} > \xi_{n,p}\]

- Correctness of algorithm under exact statistics
- Consistency under prescribed sample complexity
 - Concentration bounds for empirical quantities
Proof Ideas

\[
(i, j) \in \hat{G} \text{ if } \min_{S \subset V \setminus \{i, j\}, |S| \leq \eta} \hat{I}(X_i; X_j | X_S) > \xi_{n,p}
\]

- Correctness of algorithm under exact statistics
- Consistency under prescribed sample complexity
 - Concentration bounds for empirical quantities

Analysis for non-neighbors

- Conditional mutual information upon conditioning by local separator
- Derive rate of decay for conditional mutual information
 - Self-avoiding walk tree analysis for Ising models
 - Walk-sum analysis for Gaussian models
Proof Ideas

(i, j) ∈ \hat{G} if \(\min_{S \subset V \setminus \{i, j\}, |S| \leq \eta} \hat{I}(X_i; X_j | X_S) > \xi_{n,p} \)

- Correctness of algorithm under exact statistics
- Consistency under prescribed sample complexity
 - Concentration bounds for empirical quantities

Analysis for non-neighbors

- Conditional mutual information upon conditioning by local separator
- Derive rate of decay for conditional mutual information
 - Self-avoiding walk tree analysis for Ising models
 - Walk-sum analysis for Gaussian models

Analysis for neighbors

- Lower bound under generic edge potentials
Proof Ideas

\[(i, j) \in \hat{G} \text{ if } \min_{S \subset V \setminus \{i,j\}, |S| \leq \eta} \hat{I}(X_i; X_j | X_S) > \xi_{n,p}\]

- Correctness of algorithm under exact statistics
- Consistency under prescribed sample complexity
 - Concentration bounds for empirical quantities

Analysis for non-neighbors
- Conditional mutual information upon conditioning by local separator
- Derive rate of decay for conditional mutual information
 - Self-avoiding walk tree analysis for Ising models
 - Walk-sum analysis for Gaussian models

Analysis for neighbors
- Lower bound under generic edge potentials

Consistent Graph Estimation Under Local Separation
Summary

- Local algorithm based on low-order statistics
- Transparent assumptions
- Logarithmic sample complexity

Outlook

- Is structure learning beyond this regime hard?
- Connections with incoherence conditions
- Structure learning with latent variables

A. Anandkumar, V. Tan and Alan Willsky, “High-Dimensional Gaussian Graphical Model Selection: Tractable Graph Families” ArXiv 1107.1270.