
Seeing Through Black Boxes : Tracking Transactions through Queues

under Monitoring Resource Constraints✩

Animashree Anandkumara,∗, Ting Heb, Chatschik Bisdikianb, Dakshi Agrawalb

aEECS Dept., University of California, Irvine, CA 92697, USA.
bNetworking group, IBM Watson Research, Hawthorne, NY 10532, USA.

Abstract

The problem of optimal allocation of monitoring resources for tracking transactions progressing through a distributed

system, modeled as a queueing network, is considered. Two forms of monitoring information are considered, viz.,

locally unique transaction identifiers, and arrival and departure timestamps of transactions at each processing queue.

The timestamps are assumed available at all the queues but in the absence of identifiers, only enable imprecise

tracking since parallel processing can result in out-of-order departures. On the other hand, identifiers enable precise

tracking but are not available without proper instrumentation. Given an instrumentation budget, only a subset of

queues can be selected for production of identifiers, while the remaining queues have to resort to imprecise tracking

using timestamps. The goal is then to optimally allocate the instrumentation budget to maximize the overall tracking

accuracy. The challenge is that the optimal allocation strategy depends on accuracies of timestamp-based tracking at

different queues, which has complex dependencies on the arrival and service processes, and the queueing discipline.

We propose two simple heuristics for allocation by predicting the order of timestamp-based tracking accuracies

of different queues. We derive sufficient conditions for these heuristics to achieve optimality through the notion

of stochastic comparison of queues. Simulations show that our heuristics are close to optimality, even when the

parameters deviate from these conditions.

Keywords: Probabilistic transaction monitoring, Queueing networks, Stochastic comparison, Bipartite
matching

1. Introduction

Transaction processing has been at the heart of information technology since the 1950s when the first
large online reservation system went into operation [2, 3]. Today transaction processing is at the core of
enterprise IT systems operated by telecommunication service providers, financial institutions and virtual
retailers. The scope of transaction processing has widened to incorporate multiple software components and
applications, servers, middleware, backend databases, and multiple information sources [4].

The growing complexities of transaction processing presents new challenges to system management and
support. Today’s support helpdesks are no longer knowledgeable with the intimate details of transaction
processing. The presence of heterogeneous components, legacy systems and third-party “black box” compo-
nents [5] makes debugging, a slow and an expensive ordeal. It is thus highly desirable to speed up debugging
through automated monitoring solutions.

Although tools may be available for independent trouble-shooting within each of the components, they
cannot capture the entire life-cycle of a transaction, and thus cannot support diagnosis at the transaction
level. Instead, an integrated end-to-end solution which tracks the entire path of transaction processing

✩The work is presented in part in [1].
∗Corresponding author
Email addresses: a.anandkumar@uci.edu (Animashree Anandkumar), the@us.ibm.com (Ting He), bisdik@us.ibm.com
(Chatschik Bisdikian), agrawal@us.ibm.com (Dakshi Agrawal)

Preprint submitted to Elsevier January 11, 2011

�
�
�

�
�
�

123 1 3244

Q0

Q1

Q2

?
??

??

?

?

?

Figure 1: Introducing identifiers to timestamps at queue Q0 through instrumentation precisely tracks transactions progressing through
it. On the other hand, non-instrumented queues Q1 and Q2 have to track transactions using only arrival and departure timestamps
may incur errors due to uncertainty in the order of departures.

is required [6]. An end-to-end monitor collects transaction records from different components and then
correlates or matches them to obtain the complete transaction path. If all the components are instrumented
properly, e.g., using techniques in [7, 8, 6], then each transaction record at every component is tagged with
a unique identifier corresponding to the transaction generating it. Using these identifiers, correlation of
transaction records at different components can then be done precisely.

In many practical scenarios, however, complete instrumentation of all the components is rarely the
norm. This is due to the presence of legacy systems and third-party components with monitors producing
incompatible transaction records, which in effect, is a set of “black boxes”. In the extreme case when
none of the components is instrumented, monitoring solutions have to fall back on other generic features
in the records such as timestamps to statistically “guess” the set of records likely generated by the same
transaction, and thereby infer the path taken by that transaction [5, 9], with the caveat that the results
may be erroneous.

Most real systems lie somewhere in the middle of the spectrum between the extreme scenarios of fully
instrumented and fully non-instrumented systems. In fact, most system integration and instrumentation is
a gradual process which starts from an ensemble of black boxes and slowly transitions to a system of “clear”
or “open” boxes as the support staff acquaint themselves with various components. Given sufficient time
and efforts, skilled programmers are able to retrofit instrumentation1 to components by injecting monitoring
code or building an extra layer of middleware [6]. A complete instrumentation, however, can incur daunting
costs and is nevertheless wasteful in components where statistical tracking using timestamps already has
good accuracy. Our goal is then to systematically characterize the performance of partially instrumented
monitoring systems and identify components where retrofitting instrumentation is most required.

We answer the following questions: given a limited budget for instrumentation, what is the optimal
allocation strategy to maximize overall accuracy of tracking transactions? What is the influence of various
system parameters, such as the queueing arrival and the service rates, on the instrumentation strategy and
the tracking accuracy? Are there simple easy-to-implement heuristics that also have good performance
guarantees? What follows is a set of systematic answers to these questions.

1.1. Technical Approach and Contributions

We consider the problem of tracking transactions through a distributed system with limited instrumen-
tation support. Our goal is to select an optimal subset of components for instrumentation under a budget
constraint such that when combined with statistical tracking (using timestamps) at the non-instrumented
components, the overall tracking accuracy is maximized.

Our contributions are three fold. First, we analyze the accuracy of statistical tracking using timestamps
at a queue and characterize its dependency on different queueing parameters. Second, using these insights,
we propose two simple heuristics for the instrumentation allocation problem. Third, we derive sufficient

1Note that with partial instrumentation here the identifiers are local, defined only within each queue, which is different from the global
identifiers in fully instrumented systems [8, 6].

2

conditions for these heuristics to achieve optimality, based on the arrival and the service distributions at the
queues.

Model: We model the progress of the transactions in a distributed system as a queueing network, where
each queue represents a system component. By default, we assume the availability of (an ordered) set of
arrival and departure timestamps at each queue while identifiers are only available upon instrumentation
(queue Q0 in Fig.1). Due to parallel processing of transactions, e.g., in infinite server or processor-sharing
queues2, the order of departures is not unique, and in the absence of identifiers, tracking transactions
through a queue requires statistical matching techniques. We analyze tracking accuracies using timestamps
under two simple statistical matching policies. Identifiers are available only upon instrumentation and by
instrumenting a queue, we mean injecting code or building a middleware wrapper which tags each timestamp
with an identifier unique to the transaction, leading to error-free tracking at those queues.

Formulation: Based on the above model, we formulate a resource allocation problem, where we opti-
mally allocate the available amount of monitoring resources by selecting queues for instrumentation such
that the overall tracking accuracy is maximized. The optimal allocation strategy thus selects queues for
instrumentation in the increasing order of their timestamp-based tracking accuracies, until the budget con-
straints are met. However, the exact expression of tracking accuracy at each non-instrumented queue is not
tractable to compute in general, and has complex dependencies on the arrival and service statistics, and also
on the queueing discipline.

Heuristic Solutions: To overcome this obstacle, we propose two simple heuristics for instrumentation
allocation which predict the order of the timestamp-based tracking accuracies at different queues without
computing the exact expressions. The first heuristic predicts that the order of tracking accuracies is in the
reverse order of their queueing load factors. The second heuristic predicts the order of accuracies using an
approximation for the tracking accuracy, which becomes tight in the light load regime. The two heuristics
represent different tradeoffs in that the load-factor heuristic requires only the knowledge of the queueing load
factors while the approximation-based heuristic requires the full knowledge of arrival and service processes
but is a more efficient allocation strategy (demonstrated through both theory and simulations).

Optimality conditions: We provide sufficient conditions for these heuristics to achieve optimality, i.e.,
to correctly rank the order of the tracking accuracies, based on the notions of stochastic and convex orders

of the arrival and service distributions of the queues. The conditions have intuitive explanations in terms
of the rate and the “variability” of arrivals and services. In particular, these heuristics are always optimal
when all the arrival distributions and all the service distributions belong to the same family. Simulations
verify the optimality of our heuristics under the derived conditions and also show that our heuristics are
close to optimality even when the parameters deviate from these conditions.

Alternative Formulation: Besides allocating instrumentation resources, our heuristics are also appli-
cable in other scenarios of monitoring. For instance, for a large system, the overhead in collecting timestamp
records from all the components may be too large. In this case, the optimal monitoring resource allocation is
to a priori select only a subset of components (queues) with the highest timestamp-based tracking accuracies
for data collection. Our heuristics and their optimality guarantees are directly applicable here.

Non-goals: We emphasize some of our “non-goals”. Our formulation and solutions have a strong
theoretical foundation and are meant to provide guidelines for efficient instrumentation or data collection
in different scenarios. We do not attempt to replace existing instrumentation-based monitoring tools (See
Section 1.2 for a discussion) and exploit them when available. Our belief is that existing monitoring solutions
will have broader application by allowing for partial instrumentation, and we have a systematic approach for
pursuing it. Moreover, our solutions are not meant to automatically diagnose or correct faults, characterize
overall system performance, or provide real-time analysis, although such exercises can be carried out after
monitoring the transaction paths.

2There is no uncertainty in the order of departures for single-server queues with fixed order processing. Hence, their timestamp-based
tracking is error-free, and we do not consider them for allocation.

3

1.2. Related Work

The early literature on monitoring distributed systems relies on deep understanding of internal system
structures so that instrumentation code can be injected into proper places to record system activities at
process or object levels [10, 11, 12]. These solutions become difficult to implement in modern systems where
components are typically developed independently. Most existing monitoring solutions rely on certain types
of instrumentation that can expose the activities of interest [13, 14, 15, 6]. There are also a number of
commercially-available products for monitoring and trouble shooting in distributed systems [7, 5, 16], which
are again based on instrumenting the system software.

While instrumentation provides reliable monitoring information, it has limited use in heterogeneous
systems where many components are from third-party vendors or legacy systems. One approach is to make
the instrumentation as component-independent as possible, e.g., by limiting changes to system code rather
than user-space code [17]. Another approach is to treat each component as a black box and only rely on
external activities of these black boxes for monitoring [5, 16, 8]. These existing black-box based solutions
can be divided into two approaches: identifier-based approach [8] which tags each incoming transaction
with a unique identifier that is associated with it throughout the system, converting the problem to the
instrumented case, and trace-based approach [5, 16] which uses statistical techniques to extract monitoring
information from non-tagged activities. For example, [5, 16] use messages between components to infer
causal paths and bottlenecks. We share a similar view as [5, 16] in that a monitoring solution should be as
non-intrusive and agnostic as possible to allow for broad application, especially in systems involving black
boxes, but there are two key differences that distinguish our work from this literature: (i) we are interested
in monitoring individual transactions rather than aggregate system behaviors such as causal paths and
bottlenecks, and (ii) we take a hybrid approach of using both passive monitoring (via timestamp-based
tracking) and instrumentation (that introduces identifiers), but treat the latter as a limited resource to be
allocated judiciously.

In [9], tracking of individual transactions in a distributed system based solely on timestamps is considered.
However, [9] focuses on developing optimal matching policies for timestamp-based transaction monitoring,
whereas we focus on the comparison of tracking accuracies at different subsystems while leveraging statistical
matching policies discussed in [9] for tracking in the non-instrumented states. The stochastic comparison
techniques used in this paper has a rich history and has been applied compare different queueing parameters
such as delay and throughput [18, Ch. 14]. To the best of our knowledge, comparison of monitoring
accuracies at different queues has not been considered before.

Organization: The paper is organized as follows. In Section 2, we describe the system model and problem
formulation. In Section 3, we analyze the policies for matching timestamps. In Section 4, we propose the two
heuristics for monitoring resource allocation. In Section 5, we introduce the notion of stochastic comparison.
In Section 6, we derive sufficient conditions for the optimality of the two heuristics for network of infinite-
server queues. Section 7 deals with extensions to general product-form queues. In Section 8, we evaluate
the efficiency of heuristics through simulations. Section 9 concludes our paper.

2. System Model and Formulation

We now describe the queueing model in detail and then formulate the problem of optimal monitoring
resource allocation. Before we proceed, here are a few comments regarding the notation used in this paper.
Vectors are represented by boldface, e.g., X and X(i) is its ith element. Let fX(x), FX(x) and F̄X(x)
denote the probability density function (pdf), cumulative distribution function (cdf) and complementary
cumulative distribution function (ccdf) of a continuous variable X . Let E[X] denote its expectation and let
supp(fX) denote the support of fX .

2.1. System Model

We consider a queueing network, and initially limit to the case where all the queues are infinite server
(GI/GI/∞). The arrival and service times are drawn i.i.d. from general continuous pdfs fX and fT . In
Section 7, we generalize some of our results to the product-form queues. We assume that the sequence

4

Xk vector of i.i.d inter-arrival times
Tk vector of i.i.d service times
λk := 1

E[Xk(1)]
arrival rate

µk := 1
E[Tk(1)]

service rate

ρk := λk

µk
load factor

Vk Tk(1)− Tk(2) : spread of service time
Yk vector of arrival times
Dk vector of departure times
πt

k true matching btw. arrivals & departures
πγ

k matching according to policy γ
Bk (random) no. of arrivals in a busy period
P γ(k) prob. of correct matching in a busy period
P γ
b (k) cond. prob. of correct match given Bk = b

Table 1: Symbol list. Subscript k means queue Qk.

of queues visited by each transaction is a Markov chain, and the service is independent of the transition
sequence. The list of notations for different queueing parameters is given in Table 1. The propagation
delays and synchronization errors between different queues are assumed independent of the service or arrival
realizations.

Given a set of ordered arrival and departure timestamps, Yk and Dk at queue Qk, there is a relationship
between the service times and the true matching πt

k between the arrivals and the departures, as

Tk(i) = Dk(π
t
k(i))− Yk(i), i ∈ N. (1)

Hence, πt
k(i) is the rank of a departure timestamp corresponding to the ith arrival to the queue Qk. Since we

have access to only the arrival and departure timestamps Yk and Dk, and not to the actual service times
Tk, the true matching πt

k is unknown. A bipartite matching policy γ comes up with a probable matching πγ

between the arrival timestamps Yk and the departure timestamps Dk, which yields correct matchings with
a certain degree of accuracy, and is discussed in detail in Section 3. In addition, we assume that identical
policies γ are employed for matching at all the queues to facilitate comparison of their tracking accuracies.

Our analysis will be on a typical busy period, i.e., a period of time, starting from an empty queue until
the next time the queue becomes free, as shown in Fig.2. Let P γ(k) be the probability that the policy
outputs a correct matchings between all the arrivals and departures in a typical busy period at queue Qk.
We use P γ(k) as the measure of timestamp-based tracking accuracy, given by

P γ(k) =

∞∑

b=1

P[πγ = πt, Bk = b]. (2)

2.2. Problem Formulation

We are now ready to state the problem of optimal monitoring resource allocation. Given a budget
constraint of instrumenting at most E number of queues to enable precise tracking through the production
of identifiers, our goal is to select E number of queues in Q such that the overall tracking accuracy is
maximized. For each queue Qk, let zk ∈ {0, 1} be the indicator if it is selected for instrumentation. Then,
the effective tracking accuracy at queue Qk after instrumentation decisions is

zk + (1− zk)P
γ(k),

5

D(1)

Y (1) Y (2)

X(1)

T (1)

Time

(a) Busy Period B = 1

Y (1) Y (2) Y (3)

X(1) X(2)

Time

T (1) T (2)

D(1) D(2)

(b) Busy Period B = 2

Figure 2: Random arrivals and departures lead to random busy period sizes.

since the tracking accuracy is unity when identifiers are available and P γ(k) is the accuracy based on using
only timestamps under a statistical matching policy γ. Formally, the optimization is

z∗(E;Q) := argmax
z

∑

Qk∈Q

{zk + (1 − zk)P
γ(k)}, (3)

s.t.
∑

Qk∈Q

zk ≤ E, zk ∈ {0, 1}, z := {zk : Qk ∈ Q}.

We can see that the optimal allocation strategy is to select E number of queues with the lowest timestamp-
based tracking accuracies P γ . The challenge, as we will see, is in finding the tracking accuracy P γ since it
has complex dependencies on the arrival and service processes.

3. Timestamp-based Tracking

In this section, we describe the matching policies γ employed for associating the arrival and the departure
timestamps at a queue, and perform some preliminary analysis on the tracking accuracy of a policy.

3.1. Bipartite Matching Policies

We now briefly describe two matching policies γ that can be employed to match timestamps in the
absence of identifiers, viz., the first-in first-out (FIFO) rule and the random matching rule. The relative
performance of these policies depends on the arrival and service statistics. These policies are non-parametric,
in the sense that they require minimal knowledge about the service statistics for implementation.

Perhaps the simplest matching rule between the arrival and departure timestamps is the FIFO rule,
which is an in-order matching rule, i.e., for a given busy-period size B = b, we have a fixed rule πFIFO = I,
where I := [1, 2, . . .]T is the identity vector. The FIFO matching rule is fully distribution-free: it does not
require the knowledge of arrival or service distribution and is always valid. By valid, we mean that the FIFO
match has a strict positive likelihood of being the true match between the arrivals and the departures. An
expression for the expected matching accuracy under FIFO rule can be found in Appendix A.

In addition to the FIFO matching rule, we consider another simple rule called random matching, where
given a realization of arrivals and departures in a busy period, we uniformly pick a valid matching among all
possible matchings. The random matching rule is almost distribution-free: it only requires the knowledge
of supp(fTk

), the support of the service pdf, in order to ensure the validity of different matchings. This is
because a valid matching π at queue Qk in a busy period of size Bk = b satisfies

π :

b∏

i=1

fTk
[Dk(π(i))− Yk(i)] > 0, (4)

and the above expression only requires the knowledge of the support bounds. An expression for tracking
accuracy PRAND under random matching is given in Appendix B.

6

In contrast to the non-parametric FIFO and random matching rules, the parametric maximum-likelihood

matching rule [9] requires the full knowledge of the service distribution. The maximum-likelihood rule is
defined as the rule which maximizes the probability of correctly matching all the arrivals and departures.
However, it is not tractable to analyze this rule since it is fully adaptive to the realization of arrivals and
departures, and depends on the arrival and service statistics in a complex manner. In many cases, the simple
FIFO and random matching policies coincide with the maximum-likelihood rule or have close to optimal
performance, as discussed below.

The effectiveness of using the FIFO or the random policy crucially depends on the nature the service
distribution (for a given realization of arrivals). For instance, under light-tailed services, the probability of
out-of-order departures is small and hence, the FIFO rule is expected to have good tracking accuracy. In
fact, for Weibull3 family of distributions, with shape parameter greater than one (and hence, light tailed),
FIFO is the optimal matching policy coinciding with the maximum-likelihood rule. More generally, FIFO
rule is optimal whenever the service pdf is log-concave [9].

For heavy-tailed distributions, on the other hand, the chances of out-of-order departures are high, and
the FIFO rule is not close to the maximum-likelihood rule. In this case, the random matching rule may
have better tracking accuracy than the FIFO rule. This is observed in our simulations in Fig.5b for Weibull
distribution with shape parameter smaller than one. Moreover, random matching is optimal in case of batch
arrivals to the infinite-server queue where all possible matchings between the arrivals and departures are
equally likely, although we do not study this scenario in the paper. Hence, the relative performance of FIFO
and random matching rule depends on the service distribution.

3.2. Tracking Accuracy

Recall we consider the probability of matching all timestamps in a typical busy period to be the measure
of tracking accuracy. Perhaps, a more straightforward measure of accuracy is the probability of correctly
matching only a typical pair of arrival and departure timestamps. This however depends on the probability
of correctly matching other arrivals and departures. On the other hand, the matching across busy periods
is independent, since a valid matching between arrival and departure timestamps occurs only within busy
periods not across them. See Fig.3. Hence, the probability of correct matching in a typical busy period P γ

is the relevant measure for tracking accuracy.
The challenge is in computing P γ in (2). Consider FIFO matching as an example. Its accuracy is equal

to (see Appendix A)

P FIFO=

∞∑

b=1

P(

b−1⋂

i=1

{T (i) ∈ [X(i), X(i) + T (i+ 1)]} ∩ {T (b) < X(b)}),

where the events T (i) ∈ [X(i), X(i) + T (i + 1)] and T (b) < X(b) cannot be evaluated separately since are
correlated with one another other. We can see that the expression becomes intractable as we increase b, the
size of the busy period.

More generally, a matching policy γ may select any one of the valid matchings or permutations with a
certain probability, and the tracking accuracy P γ from (2) becomes

P γ =
∞∑

b=1

∑

πj

P[πγ = πt = πj, B = b],

where the sum is over all the permutation vectors πj over {1, 2, . . . , b}. Since there are b! number of
permutation vectors, we require exponential number of computations in b.

It is therefore not tractable to compute the tracking accuracies P γ(k) at different queues Qk, in order to
find the optimal resource allocation strategy in (3). Moreover, it is useful to obtain some general guidelines

3The pdf of a Weibull variable is f(x) = (w
c
)(x

c
)w−1 exp(−(x

c
)w) for x > 0, where w and c are shape and scale parameters. When

w > 1, the distribution is light tailed, when w < 1, it is heavy tailed and w = 1 is the exponential distribution.

7

Time

System

Occupancy

Busy Periods

Arrivals

Departures

1

2

0

Figure 3: Matching arrival and departure timestamps decomposes across different busy periods.

about the influence of different queueing parameters on the resulting tracking accuracy. Fortunately, we
note that we do not need to know the exact accuracies at different queues in the network to obtain the
optimal solution to instrumentation allocation in (3). In fact, it suffices to know the relative order of these
accuracies. The goal of this paper is to establish simple heuristics that can be used to infer the order of
matching accuracies without directly computing them. To this end, we now propose two approaches with
different complexities and generality. Later in Section 5 and 6, we derive sufficient conditions for these
heuristics to achieve optimality according to (3).

4. Two Heuristics for Optimal Resource Allocation

We propose two approaches to instrumentation allocation through prediction of the order of timestamp-
based tracking accuracies P γ(k) at different queues Qk. One approach is to avoid computation of P γ(k)
altogether and instead infer their order through simple queueing parameters such as the load factors. The
other approach is to approximately compute P γ(k) by only considering small busy-period sizes. Both these
simple approaches instrument queues independent of the policies γ employed for timestamp matching. We
now describe these two approaches in detail.

4.1. Approach 1: Order of Load Factors

The load factor ρk = λk

µk
of a queue Qk, which is the ratio of the arrival rate λk to the service rate

µk, is perhaps the most commonly used queueing parameter for performance evaluation of queues. We
propose the load-factor heuristic for instrumentation allocation which selects queues for instrumentation
in the decreasing order of their load factors until the budget constraint is met. The load-factor heuristic
is robust since the selected set of queues is invariant under small perturbations in the arrival and service
statistics.

The load-factor heuristic predicts queues with higher load factors to have lower timestamp-based tracking
accuracies. This is intuitive since a lighter load implies a smaller number of simultaneously-served arrivals in
the infinite-server queue on average leading to a lower uncertainty in the order of departures. The intuition,
however, does not extend when we consider queues with different arrival and service distributions. The
arrival and service processes influence the tracking accuracy in a complex manner, and the load factor may
not always capture the required effects for comparison of tracking accuracies at different queues.

A simple example is two queues with same arrival rate, one with uniform service Unif(0, 2m) on support
[0, 2m] and the other with deterministic service of value md > m. Here, the load-factor heuristic incorrectly
predicts the deterministic service to have worse tracking accuracy, while, in fact, it actually has perfect
accuracy. Hence, the load-factor heuristic is not universally optimal for instrumentation allocation.

An intuitive reason for the sub-optimality of the load-factor heuristic is that there are two sources of
errors impacting the tracking accuracy: variability in service times leading to uncertainty in the order of
departures and high load factor resulting in more simultaneous servicing in infinite-server queues on average.
The load-factor heuristic only captures the latter effect and completely ignores the former. As we saw in

8

the above example, simultaneous servicing does not always lead to bad accuracy and is also governed by the
variability in the service times.

In many cases, different subsystems in a distributed system may have similar service distributions (such
as from the same family), but with different load factors. Here, the load-factor heuristic may correctly
predict the order of the tracking accuracies. We prove a sufficient set of conditions for the optimality of the
load-factor heuristic in Section 6 by precisely investigating the dependency of the arrival and the service
processes on the tracking accuracy.

4.2. Approach 2: Small-Batch Approximation

The load-factor heuristic described in the previous section avoids computation of the tracking accuracy
altogether. We now propose an alternative heuristic which approximates tracking accuracy through a simple
expression, and makes instrumentation decisions based on the approximation. We later demonstrate the
superiority of this heuristic over the load-factor heuristic, both through theory and simulations.

The approximation for tracking accuracy is based on the series expansion

P γ(k) = P[Bk = 1] +

∞∑

b=2

P γ
b (k)P[Bk = b], (5)

where P γ
1 = 1 since when there is only one transaction in the busy period, tracking is perfect. Under

sufficient variability of the service times (i.e., not deterministic services), the probability of correct matching
typically decays with the busy-period size,

lim
b→∞

P γ
b (k) = 0,

since the number of possible matchings grows exponentially with the busy-period size b and we make an error
almost surely as the busy period size goes to infinity. Hence, the terms corresponding to larger busy-period
sizes in (5) can be dropped and an approximate tracking accuracy can be efficiently computed by limiting
to small busy-period sizes.

The simplest approximation is when we ignore all the terms in (5) except for the first one, which is simple
to evaluate. We refer to this as the unit-batch approximation and use it to allocate instrumentation resources
to queues. Note that the unit-batch approximation is slightly more complex than the load-factor heuristic.
We demonstrate, both through theory and simulations, that this leads to superior performance over the
load-factor heuristic; the intuition being that this heuristic captures additional features of the arrival and
service statistics.

At low arrival rate, this approximation (and also more refined ones with more terms) becomes tight in
the limit. Intuitively, at low arrival rates, the dominant event is having a single arrival in each busy period
since the arrivals are widely separated on average.

Proposition 1. (Tightness at Low Arrival Rate). As the arrival rate to a queue Qk goes to zero,

and the service distribution is kept fixed, we have

lim
λk→0

P[Bk = 1]

P γ(k)
= 1. (6)

Proof: As λk → 0, we have P[Bk = 1] = P[Xk > Tk] → 1 and P γ → 1 since the probability of out-of-order
departures goes to zero. 2

Hence, the tracking accuracy P γ is well approximated by the probability of unit busy period in the
low arrival rate or the light load regime. However, simulations in Section 8 show that the unit-batch
approximation correctly captures the trend of P γ and is hence, an efficient strategy for instrumentation
allocation over a wider regime of loads.

9

5. Preliminaries: Stochastic Comparison

We have so far proposed two simple heuristics for optimal instrumentation resource allocation which
circumvent the challenges in computing the tracking accuracies at various queues. Our goal is to establish
a general set of conditions on the arrival and service processes, under which these simple heuristics coincide
with the optimal allocation strategy. To this end, we introduce the notion of stochastic comparison of
random variables.

Perhaps the simplest notion of comparing two random variables is through their mean values. But very
often, this comparison turns out to be too loose to draw useful conclusions since the probability distribution of
the two variables can be very different. In the context of this paper, comparing only queueing load factors,
which is just the average system behavior, is not enough to always guarantee an order of the tracking
accuracies of the queues and hence, optimality of the load-factor heuristic for instrumentation allocation.

Instead, we impose stronger constraints on the distributions of the variables under comparison to obtain
useful conclusions. Here, we employ two notions of stochastic comparison, viz., the stochastic order and
the convex order. The stochastic order is a stronger form of comparing the mean values, while the convex
order is a stronger form of comparing the variances of random variables. The detailed definitions are given
in Appendix C. We use these notions in Section 6 to compare tracking accuracies at different queues, and
to derive sufficient conditions for the optimality of the two proposed heuristics for resource allocation.

5.1. Stochastic Comparison of Busy Periods

We now provide some preliminary results on comparing the busy-period sizes of queues under stochastic
or convex orders of arrival and service processes. We use these results in Section 6 to obtain an order on the
tracking accuracies of the queues thereby establishing the optimality of our heuristics for instrumentation
allocation.

We now show that under a stochastic order of arrival processes and service processes at two queues, we
can guarantee a stochastic order of the size of their busy periods.

Lemma 1. (Comparison of Busy Periods under Stochastic Order). For two GI/GI/∞ queues

Qk, Qm with i.i.d arrivals Xk, Xm and i.i.d service times Tk, Tm, we have

Xk

st
≤ Xm, Tk

st
≥ Tm ⇒ Bk

st
≥ Bm. (7)

Proof: See Appendix D 2

The above result confirms our intuition that the size of the busy period increases with faster arrivals and
slower services (and hence, higher load factors), formalized under the notion of stochastic order.

We now consider an alternative scenario where one queue has a higher (normalized) service variability
than the other, formalized by the presence of a convex order. We show that this also implies a stochastic
order on their busy-period sizes for the special case of Poisson arrivals at all the queues.

Lemma 2. (Comparison of Busy Periods under Convex Order & Poisson Arrivals). For two

M/GI/∞ queues Qk, Qm with i.i.d Poisson arrivals with rates λk, λm and i.i.d service times Tk, Tm, we

have

λkTk ≤
cx

λmTm ⇒ Bk

st
≤ Bm. (8)

Proof: See Appendix E. 2

Informally, the above result states that a more variable service distribution (normalized by the arrival
rate) results in larger busy periods.

The results in (7) and (8) form an integral component of our proofs in the comparison of tracking
accuracies since, larger busy periods leads to lower tracking accuracies. However, we see in the subsequent
sections that certain additional conditions, in addition to stochastic or convex orders of arrivals and services,
are needed to guarantee the order of the tracking accuracies, and hence, optimality of our heuristics for
instrumentation allocation.

10

6. Optimality in GI/GI/∞ Queues

6.1. Load-Factor Heuristic

Recall that the load-factor heuristic, described in Section 4.1, predicts queues with higher load factors to
have lower timestamp-based tracking accuracy and hence, selects them for introducing identifiers through
instrumentation. We now provide sufficient conditions on the arrival and service processes under which the
load-factor heuristic is the optimal resource allocation strategy.

A stochastic order on the arrival and the service times is a prerequisite condition in our approach since
it leads to a stochastic order on the busy periods from Lemma 1. In addition to the stochastic order on the
arrival and service processes, we need additional conditions to establish the order of the tracking accuracies,
depending on the matching policy employed. These additional conditions turn out to be different for the
FIFO and the random matching rule. This is because the tracking accuracies of the two rules are sensitive
to different kind of events. For the FIFO rule, any out-of-order departure results in an error, which implies
its sensitivity to the spread of the service distribution, defined precisely in Section 6.1.1. On the other hand,
random matching is somewhat less sensitive to the service spread since it uniformly picks a matching out of
all valid matchings, and this is reflected in our results. We first provide sufficient conditions for optimality
of the load-factor heuristic under the FIFO rule and then consider the random matching rule. Finally, in
Section 6.1.3, we provide examples where these conditions are satisfied.

6.1.1. Optimality Under FIFO Matching Rule

We now provide conditions for the optimality of the load-factor heuristic when FIFO is the matching
policy employed at all the queues. Since overtaking or out-of-order departures cause errors in FIFO matching,
we relate the tendency for overtaking to the spread of the service distribution, given by

Vk := Tk(1)− Tk(2), (9)

where Tk(1) and Tk(2) are independent samples of the service time Tk at queue Qk. Note that Vk ≡ 0, if
the service is deterministic. The spread of a distribution is thus related to the variability; a more “spread
out” service distribution has higher variability, and thus, has higher tendency for generating out-of-order
departures.

We now show the main result that the order of the tracking accuracies under FIFO rule follow the reverse
order of the load factors in the presence of a stochastic order.

Theorem 1. (Optimality of Load-Factor Heuristic Under FIFO Rule). At queues Qk, Qm, under

a stochastic order on arrival times Xk and Xm, service times Tk and Tm and their spreads Vk and Vm, we

have

Xk

st
≤ Xm, Tk

st
≥ Tm, |Vk|

st
≥ |Vm|

⇒ ρk ≥ ρm, P FIFO(k) ≤ P FIFO(m). (10)

Hence, if the arrival, service and service spread distributions at all the queues satisfy the above stochastic

order, then the load-factor heuristic for allocation of instrumentation resources is optimal, according to

optimization in (3).

Proof: See Appendix F. 2

Hence, slower arrivals, faster services (which thus imply a lower load factor), and lower service spreads
result in more accurate tracking under the FIFO rule, when the comparison is formalized by the notion of
stochastic order.

The combined conditions of service speed and spread in (10) places constraints on the service distributions
under comparison. Informally, we need one service to be simultaneously slower and more spread out than
the other, i.e., one service distribution has more probability mass concentrated closer to zero than the other.
For example, the Weibull distribution with different shape parameters but same scale parameter satisfies
this condition, as shown in Fig.4.

11

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

w = 2

w = 8

Figure 4: Comparison of two Weibull distributions with pdf f(x) = (w
c
)(x

c
)w−1 exp(−(x

c
)w) for x > 0. The distribution with

lower shape parameter w has higher FIFO tracking accuracy. See Theorem 1.

6.1.2. Optimality Under Random Matching

We now provide sufficient conditions for optimality of the load-factor heuristic when the random matching
rule is employed for matching arrival and departure timestamps at all the queues. Recall that random
matching rule uniformly chooses a matching among all valid matchings in the busy period.

We now show the main result of this section that the order of the tracking accuracies under the random
matching rule follow the reverse order of the load factors in the presence of a stochastic order.

Theorem 2. (Optimality of Load-Factor Heuristic Under Random Matching Rule). At queues
Qk, Qm, under random matching rule with arrival times Xk and Xm, service times Tk and Tm with supports,

supp(fTk
) = [αk, βk] and supp(fTm

) = [αm, βm], we have

Xk

st
≤ Xm, Tk

st
≥ Tm, αk ≤ αm

⇒ ρk ≥ ρm, P RAND(k) ≤ P RAND(m). (11)

Hence, if the arrival, service and service support at all the queues satisfy the above stochastic order, then

the load-factor heuristic for allocation of instrumentation resources is optimal, according to optimization in

(3).

Proof: See Appendix G. 2

Hence, slower arrivals and faster services along with a mild condition on the support lower bounds of the
service distribution imply lower tracking accuracy under the random matching rule, when the comparison
is formalized by a stochastic order.

The condition in (11) on the support of the service distributions is mild and is usually satisfied since one
mostly encounters service distributions with a lower bound of support equal to zero. However, it cannot
be dropped as seen in this example when Tk ≡ µk and Tm = Unif(0, 2µm), the uniform distribution, with
µk > µm. Since αk = µk > αm = 0, (11) does not hold, which is indeed true since in fact, PRAND(k) = 1 >
PRAND(m) in this example.

6.1.3. Special Case: Same Distribution Family

We have so far established sufficient conditions for optimality of the load-factor heuristic when all the
queues employ either the FIFO or the random matching rules. We now consider a special case of arrival and
service distributions belonging to the same distribution family where optimality of the load-factor heuristic
is guaranteed under both FIFO or random matching rules, without the need for additional conditions.

Corollary 1. (Optimality of Load-factor Heuristic Under Same Distribution Family). When

the service distributions at different queues are linearly scaled versions of the same distribution, and the

same holds for all the arrival distributions as well, then the tracking accuracies at the queues are in the

reverse order of their load factors under both FIFO and random matching rules. Hence, here, the load factor

heuristic is optimal for resource allocation, according to optimization in (3).

12

Proof: We show that the conditions for FIFO rule in Theorem 1 are satisfied. For random matching rule,
the condition on lower bound of support in Theorem 2 is, however, violated. Hence, we need to prove the
above statement from scratch. See Appendix H. 2

The above result holds if all the service distributions are say exponential, uniform and so on. In practice,
the service distributions of different subsystems may be similar and hence, this result may be relevant.
The constraint on the arrival processes is however more restrictive in case of an inter-connected network of
queues, since it limits to Poisson arrivals to the system.

6.2. Unit-Batch Approximation

We have so far demonstrated the effectiveness of the load-factor heuristic when the arrival and service
distributions are similar or more generally, constrained to satisfy a stochastic order. Next, we provide
sufficient conditions to establish the optimality of the alternative heuristic for instrumentation allocation
based on unit-batch approximations, described in Section 4.2. Recall that the unit-batch approximation
selects queues for instrumentation in the increasing order of their probability of having a unit-sized busy
period.

6.2.1. Optimality Under Stochastic Order

We now show that the conditions given in Theorems 1 and 2, which guarantee optimality of the load-
factor heuristic, also guarantee the optimality of the unit-batch approximation.

Theorem 3. (Optimality of Unit-Batch Approximation Under Stochastic Order). We have

for two queues Qk and Qm,

Xk

st
≤ Xm, Tk

st
≥ Tm, |Vk|

st
≥ |Vm|

⇒ P[Bk = 1] ≤ P[Bm = 1], P FIFO(k) ≤ P FIFO(m). (12)

Xk

st
≤ Xm, Tk

st
≥ Tm, αk ≤ αm

⇒ P[Bk = 1] ≤ P[Bm = 1], P RAND(k) ≤ P RAND(m). (13)

Hence, the above conditions guarantee that the heuristic based on unit-batch approximation coincides with

the load-factor heuristic and hence, also achieves optimality in (3).

Proof: It is easy to see that P[Bk = 1] = P[Xk > Tk] ≤ P[Bm = 1] since Xk − Tk

st
≤ Xm − Tm. 2

Hence, the unit-batch approximation achieves optimality in the above scenario where the load-factor
heuristic is also optimal. We now demonstrate the superiority of the unit-batch approximation over the
load-factor heuristic by considering a different scenario.

6.2.2. Optimality Under Convex Order

We now consider a special scenario where all the queues have the same load factor but with different
service variabilities. In this case, the load-factor heuristic fails to distinguish the tracking accuracies of
different queues and its performance is equivalent to a random selection of queues for instrumentation. On
the other hand, we show below that the unit batch approximation achieves optimality when the queueing
services satisfy a convex order.

Theorem 4. (Optimality of Unit-Batch Approx. Under Convex Order and FIFO Rule). For

two M/GI/∞ queues Qk, Qm with i.i.d Poisson arrivals with rates λk, λm and i.i.d service times Tk, Tm,

we have

λkTk ≤
cx

λmTm

⇒ P[Bk = 1] ≥ P[Bm = 1], P FIFO(k) ≥ P FIFO(m). (14)

13

Hence, under Poisson arrivals, convex order of normalized services and FIFO matching rule, the unit-batch

approximation is the optimal strategy for allocation of instrumentation resources, according to optimization

in (3).

Proof: P[Bk = 1] = E[e−λkTk] is a concave function in λkTk and hence, P[Bk = 1] ≥ P[Bm = 1]. For the
order of P FIFO(k) and P FIFO(m), see Appendix I. 2

Hence, the unit-batch approximation achieves optimality over a wider range of distributions than the
load factor heuristic. The relative performance of the load-factor heuristic and unit-batch approximation
for instrumentation allocation depends on the queues under consideration. For queues with similar service
distributions but significantly different load factors, the load-factor heuristic suffices to achieve efficient
allocation. On the other hand, if all the load factors are close to one another, the effect of service variability
and higher-order moments become significant and are not captured by the load-factor heuristic. In such
scenarios, there is significant advantage in employing the unit-batch approximation.

7. Product-Form Networks

We have so far considered comparison of monitoring performance for different service distributions when
all the queues are infinite-server queues. In this section, we extend some of our results to the more general
queueing networks consisting of egalitarian processor sharing (PS) queues (with load factors less than one
to ensure stability) and the infinite-server queues. These are part of the well-known product-form queues4

[21].

7.1. Processor-Sharing Network

We first consider all the queues to be processor-sharing queues which makes comparison between them
tractable. In the (egalitarian) processor sharing, each waiting transaction gets an equal share of service
capacity. Since there is simultaneous processing of transactions, out-of-order departures are possible and
there is uncertainty in matching arrival and departure timestamps.

In a nutshell, we now show that the comparison results for infinite-server queues under random matching
in Theorem 2 holds for processor-sharing queues as well. However, the proof is more involved since the
sojourn time distributions of different transactions are correlated under processor-sharing discipline.

We use the term job-length to refer to the amount of service required, and we use the term sojourn time

to denote the amount of time spent in the system. We denote the job-lengths by J = [J(1), J(2), . . .] and

assume that J(i)
i.i.d.
∼ fJ .

Theorem 5. (Optimality of Heuristics in Processor-Sharing Queues Under Random Match-
ing). Given two processor-sharing queues with job lengths Jk and Jm and supports [αk, βk] and [αm, βm],
we have

Jk
st
≥ Jm, αk ≤ αm, (15)

⇒ ρm ≥ ρk, P[Bm = 1] ≤ P[Bk = 1], P RAND(k) ≤ P RAND(m).

Proof: See Appendix J. 2

The above results on comparison of two processor-sharing queues under random matching are iden-
tical to those comparing two infinite-server queues in Theorem 2. Hence, our heuristics are optimal for
instrumentation under the above stochastic-order conditions when all the queues are either infinite-server
or processor-sharing queues. However, when we have both infinite-server and processor-sharing queues, the
above results are no longer valid and we consider this scenario in the next section.

4The tracking accuracy of GI/M/1 with first-come first-serve (FCFS) or last-come first-serve with preemption (LCFS-PR), which are
part of a product-form network, is unity. This is because there is a fixed order of departures. Hence, they are ignored for instrumentation
allocation.

14

Arrival rate 1 of Poisson process, 1000 transactions, 10 Monte Carlo runs.

0 0.5 1 1.5 2 2.5 3

10
−0.9

10
−0.8

10
−0.7

10
−0.6

10
−0.5

10
−0.4

10
−0.3

10
−0.2

10
−0.1

ML

FIFO

Rand

Unit batch

Service Rate

(a) Shape Parameter w = 1

0 0.5 1 1.5 2 2.5 3

10
−0.9

10
−0.8

10
−0.7

10
−0.6

10
−0.5

10
−0.4

10
−0.3

10
−0.2

10
−0.1

ML

FIFO

Rand

Unit batch

Service Rate

(b) Shape Parameter w = 1.5

0 0.5 1 1.5 2 2.5 3

10
−0.9

10
−0.8

10
−0.7

10
−0.6

10
−0.5

10
−0.4

10
−0.3

10
−0.2

10
−0.1

ML

FIFO

Rand

Unit batch

Service Rate

(c) Shape Parameter w = 0.5

Figure 5: Matching Accuracies of ML, FIFO, and random matching together with the low-arrival rate approximation. See
Sections 3.1 and 4.2.

7.2. Product-Form Network

We now compare monitoring performance of a processor-sharing queue with an infinite-server queue.
This analysis is more complicated since the sojourn times of the two queues have different dependency
structures. We limit to the scenario when the job lengths in the processor-sharing queue stochastically
dominate the service times of the infinite-server queue.

Theorem 6. (Optimality in Product-Form Networks Under Random Matching).Given a processor-

sharing queue with job-lengths JPS with support [αPS, βPS] and infinite-server queue with service TINF, and

arrivals XPS and XINF,

XPS

st
≤ XINF, JPS

st
≥ TINF, αPS ≤ αINF (16)

⇒ ρPS ≥ ρINF, P[BPS = 1] ≤ P[BINF = 1], P RAND

PS
≤ P RAND

INF
.

Proof: See Appendix K 2

Hence, in a product-form network, under the above stochastic order, our two heuristics coincide with
the optimal instrumentation strategy.

8. Numerical Analysis

We have so far provided a precise set of theoretical conditions when the two proposed heuristics coincide
with the optimal instrumentation allocation strategy. In this section, we compare the performance of various
instrumentation strategies through simulations. There are mainly two questions we seek to answer: How
do our heuristics compare with the optimal solution when the theoretical conditions in Sections 6 and 7 for
optimality are not met? What is the relative performance of the two heuristics in different load regimes?

We consider infinite-server queues with service distributions belonging to the Weibull family. The Weibull
distribution is a rich family allowing us to tune the rate and the randomness of the service time separately by
varying the scale and the shape parameters, and also includes the exponential distribution (shape parameter
w = 1). Note that for the same scale parameter c, the variance decreases with the shape parameter w. Hence,
distributions with w < 1 have higher variance than the exponential distribution, and vice versa.

15

Instrument E = 2 out of |Q| = 10 states, unit arrival rate (λ = 1) of Poisson process, service rates µk
i.i.d.
∼

Unif[0.5, Tmax], Weibull shape parameter wk
i.i.d.
∼ Unif[0.1, 2], 1000 configurations.

0.5 1 1.5 2 2.5

10
0.8

10
0.9

Optimal

Load Factor

Unit Batch

Rand. Select

Max. Service Rate Tmax

(a) Obj. Value

0.5 1 1.5 2 2.5

10
−0.02

10
−0.01

10
0

Optimal

Load Factor

Unit Batch

Rand. Select

Max. Service Rate Tmax

(b) Ratio =
Obj. under heuristic

Optimal Obj.

0.5 1 1.5 2 2.5

10
−0.7

10
−0.6

10
−0.5

10
−0.4

10
−0.3

10
−0.2

Load Factor

Unit Batch

Rand. Select

Max. Service Rate Tmax

(c) Fraction of Overlap with Opt.

Figure 6: Comparison of instrumentation strategies. Obj. = E +
∑

Qk∈Q

(1− zk)P
FIFO(k) , see (3).

8.1. Effect of Matching Policies

In Fig.5, we compare the tracking accuracies P γ of policies γ given by the FIFO, random matching and
the optimal maximum-likelihood (ML) policies. We also compare the unit-batch approximation with the
exact tracking accuracy. In Fig.5a, for the shape parameter w = 1, we have the exponential distribution,
and all the matching policies, viz., ML, random, and FIFO matchings have equal performance, consistent
with the analytical results in [9]. In Fig.5b, for the shape parameter w > 1, FIFO has the same performance
as ML, and is better than random matching, again consistent with theory in [9]5. In Fig.5c, for the shape
parameter w < 1, we have heavy-tailed services, and here, random matching has better accuracy than FIFO
rule. This is intuitive since out-of-order departures are more likely under heavy-tailed services. Moreover,
the tracking accuracy in all these cases increases with the service rate as predicted.

In all the cases, there is a non-trivial gap between the actual tracking accuracies and the unit-batch
approximation (up to about 10%); however, the approximation correctly follows the trend of the true
values. Hence, we can expect solutions based on the exact and approximate evaluation to pick a similar set
of queues for instrumentation, thereby leading to efficient allocation of monitoring resources, as discussed
below.

8.2. Comparison of Instrumentation Strategies

In Fig.6, we compare our instrumentation strategies based on the load factor and the unit-batch approx-
imation with the optimal strategy under the optimization rule in (3). As a benchmark, we also compare the
proposed strategies with random instrumentation, i.e., uniformly selecting a subset of queues for instrumen-
tation.

We consider Weibull service times and FIFO matching (similar results are observed under random match-
ing). We run simulations under randomly chosen parameters for each queue and then average the results of
different configurations. Specifically, the service rates are drawn i.i.d. uniformly between a minimum and
a maximum service rate, and so are the shape parameters. We vary the maximum service rate to obtain
more diverse set of service distributions for the queues under consideration for instrumentation allocation.
Since the parameters are randomly chosen, the sufficient conditions for optimality of our heuristics proven
in Section 6 are not met, and we do not expect our heuristics to exactly coincide with the optimal allocation
strategy.

5It is shown in [9] that FIFO matching coincides with the optimal ML tracking when the shape parameter w > 1, i.e, there is
less variation in service times.

16

In Fig.6, we see that the performance of the two heuristics gets closer to that of the optimal strategy as
the maximum service rate increases leading to a more diverse set of queues. For the load-factor heuristic,
this is because the load factors of different queues are well separated as the queues become more diverse.
For the unit-batch heuristic, this is because, in addition, the service rates are increasing on average, leading
to tighter approximation of the tracking accuracy. On the other hand, the gap between optimal allocation
and random allocation increases with the maximum service rates since random allocation performs poorly
when the queues are diverse. We also note that the performance of the unit-batch approximation is superior
over the load-factor heuristic but they become close when the queues have well-separated load factors, as
predicted in Section 4.

9. Conclusion

In this paper, we considered the problem of optimal instrumentation allocation for tracking transactions
in a queueing network. Two types of monitoring resources are considered in the form of identifiers and
timestamps. Identifiers provide precise tracking but are limited while timestamps are imprecise but available
everywhere. The optimal allocation strategy selects queues with least timestamp-based tracking accuracies
for introducing identifiers. We proposed two simple heuristics for allocation which coincides with the optimal
strategy under certain conditions on arrival and service processes. Simulations show that our solutions are
effective even when there is a deviation from the optimality conditions.

While providing a strong theoretical foundation and effective solutions for instrumentation allocation,
we acknowledge that the overall problem has a broader range of challenges. For instance, in practice, the
model for arrivals and services may not be known and needs to be estimated from data as well. There may
be systems where complete timestamp information may not be available. We have assumed equal costs
for instrumenting different components, while with unequal costs, we need to investigate new optimality
conditions for our heuristics. We have assumed an infinite-server queueing system, while in reality there are
a finite number of servers. The optimality results can in principle be extended to this scenario. However,
direct analysis of such a system is much more involved since the service times of different packets are not
independent. Moreover, the infinite-server system is the worst-case scenario for timestamp-based tracking
since a finite-server system is less likely to produce out-of-order transactions. In this sense, the recommended
instrumentation solution can be viewed as maximizing a lower bound on the tracking accuracy under finite-
server queueing. Other challenges involve analyzing the effect of admission control and allowing for dynamic
switching of data collection between different systems.

Acknowledgements

The authors thank R. Nunez Queija for discussions on the processor-sharing queue and Varun Gupta for
discussions on the notion of convex order at the MAMA 2009 workshop.

Appendix A. Accuracy Under FIFO

Lemma 3. The tracking accuracy in (2) simplifies under FIFO rule as

P FIFO =

∞∑

b=1

P[πt = I, B = b],

where each term in the series P[πt = I, B = b] is given by

= P(

b−1⋂

i=1

{T (i) ∈ [X(i), X(i) + T (i+ 1)]} ∩ {T (b) < X(b)}),

where X(i) and T (i) are the inter-arrival and service times.

17

Proof: Given the busy-period size B = b, the event that FIFO rule is correct is

AFIFO

b =
b−1⋂

i=1

{T (i) < X(i) + T (i+ 1)},

since ith transaction needs to depart sooner than the (i+ 1)th transaction. The event that the busy-period
size is B = b is given by

{B = b} =

b−1⋂

i=1

{T (i) ∈ [X(i),

b∑

j=i

X(j)]} ∩ {T (b) < X(b)}.

P FIFO =
∑∞

b=1 P[A
FIFO

b ∩ {B = b}] and result follows. 2

Appendix B. Accuracy Under Random Rule

I n order to compute the tracking accuracy PRAND under random matching rule, we need to find the
number of valid matchings. The number of such valid matchings is given by the number of perfect matchings
in the 0-1 biadjacency matrix Ak defined as follows: for a bipartite graph with arrivals Yk in one bipartition
and departures Dk in the other, the presence of edge (i, j) in Ak indicates positive likelihood of ith arrival
corresponding to the jth departure

Ak(i, j) = 1 ⇐⇒ fTk
[Dk(j)− Yk(i)] > 0, ∀1 ≤ i, j ≤ b. (B.1)

Any valid matching between the arrivals and the departures is a perfect matching on the biadjacency matrix
Ak, where a perfect matching is defined as a set of pairwise non-adjacent edges where all vertices are
matched. The number of perfect matchings for the biadjacency matrix A is given by its permanent

perm(A) :=
∑

π

b∏

i=1

A(i, π(i)), (B.2)

where the sum is over all the permutation vectors π over {1 , . . . , b} conditioned on busy period size B = b.
Denote the perfect matching chosen by random matching as πRAND. Since each perfect matching is chosen
with uniform probability and there are perm(A) number of them, the probability of choosing one of them
is perm(A)−1. Using this fact, it is easy to now derive the expression for tracking accuracy under random
matching

PRAND =

∞∑

b=1

P[πRAND = πt, B = b],

=

∞∑

b=1

∑

a

P[A = a, B = b]

perm(a)
. (B.3)

Appendix C. Introduction to Stochastic Order

Appendix C.0.1. Stochastic Order

The stochastic order (also known as the usual stochastic order) is defined as follows [19, 20].

Definition 1 (Stochastic Order). A variable Z1 is said to be stochastically dominant with respect to a

variable Z2, denoted by Z1

st
≥ Z2, if

Z1

st
≥ Z2 ⇐⇒ E[φ(Z1)] ≥ E[φ(Z2)], (C.1)

for all increasing functions φ for which expectations exist.

18

Naturally, the above definition implies

Z1

st
≥ Z2 ⇒ E[Z1] ≥ E[Z2]. (C.2)

We intend to compare tracking accuracies at queues when their arrival processes satisfy a certain stochas-
tic order and their service processes satisfy the reverse stochastic order. We leverage on the stochastic orders
to guarantee an order on the tracking accuracies at different queues and hence, optimality of our heuristics.

Appendix C.0.2. Convex Order

We define another notion of comparison of random variables known as the convex order [19, Ch. 3].

Definition 2 (Convex Order). A variable Z1 is said to be smaller than Z2, denoted by Z1 ≤
cx

Z2, if for

all convex functions φ : < 7→ <, E[φ(Z1)] ≤ E[φ(Z2)].

The convex order compares the variability of random variables and requires equal mean values,

Z1 ≤
cx

Z2 ⇒ E[Z1] = E[Z2],Var[Z1] ≤ Var[Z2].

In our context, we intend to compare queues under the same load factor but with different variability in
services. Intuitively, a service distribution with higher variability results in more uncertainty in the order of
departures implying lower tracking accuracy, and we use the notion of convex order to capture this effect.

The stochastic and convex orders thus deal with different aspects of comparison of random variables: the
former deals with the magnitudes while the latter deals with variability, and one does not imply the other.
There are many sufficient conditions which can be easily checked for the stochastic or convex order to hold
[19]. For a set of queues, we can use these conditions to check if the stochastic or the convex orders hold, in
which case, we can draw conclusions about the optimality of our heuristics for instrumentation allocation.

Appendix D. Proof of Lemma 1

We have for b ≥ 1,

P[Bk = b] = P[
⋂

i=1,...,b−1

Xk(i) ≤ Tk(i) ≤

b∑

j=i

Xk(j), Xk(b) > Tk(b)].

We have P[Bk > 1] = F̄Tk
[Xk] and hence, P[Bk > 1] ≥ P[Bm > 1]. Now consider,

pk(x) := P[Bk > b+ 1|Bk > b,Xk(b+ 1) = x]

= P[Tk(b+ 1)

b⋃

i=1

{Tk(i)−

b∑

j=i

Xk(b)} > x],

= P[max{Tk(b+ 1), Tk(b)−Xk(b), . . . , } > x]. (D.1)

We now claim that for b ≥ 1,

Xk

st
≤ Xm, Tk

st
≥ Tm ⇒ pk(x) ≥ pm(x). (D.2)

This is because each term in (D.1) satisfies stochastic dominance for i = 1, . . . , b− 1,

Xk

st
≤ Xm, Tk

st
≥ Tm ⇒ Tk(i)−

b∑

j=i

Xk(b)
st
≥ Tm(i)−

b∑

j=i

Xk(b).

19

Indeed the above terms are correlated, but they have the same dependency relationship for both queues Qk

and Qm. Technically, this means that they share the same copula. The copula C for a multivariate variable
Z is the mapping on the distribution functions such that

FZ(z) = C[FZ(1)(z(1)), FZ(2)(z(2)) . . .]. (D.3)

By [19, Thm. 6.B.14], under the same copula, we have the multivariate stochastic order

[Tk(b+ 1), Tk(b)−Xk(b), . . .]
st
≥ [Tm(b + 1), Tm(b)−Xk(b), . . .].

Hence, their maxima also satisfy stochastic order and (D.2) is true. Since pk(x) and pm(x) are decreasing
in x, (7) holds.

Appendix E. Proof of Lemma 2

Let T ′ := λT be the normalized service time and let X ′(i) be i.i.d. Poisson arrivals with unit rate.
P[B > b|X′ = x] is given by

= P[max(T ′(1), T ′(2) + x(1), . . . , T ′(b) +

b−1∑

i=1

x(i)) > X ′(b)]

= 1− E[e−max(T ′(1),T ′(2)+x(1),...,T ′(b)+
∑b−1

i=1
x(i))]. (E.1)

Now, from convex order,

T ′
k ≤

cx
T ′
m ⇒ max(T ′

k(1), T
′
k(2) + x(1), . . . , T ′

k(b) +

b−1∑

i=1

x(i)))

≤
cx

max(T ′
m(1), T ′

m(2) + x(1), . . . , T ′
m(b) +

b−1∑

i=1

x(i))). (E.2)

Since (E.1) is convex in the argument, it follows the same order of the service distributions. Since the
convex order is closed under mixtures [19, Thm. 3.A.12], marginalizing over the arrival times X′ preserves
the order. Hence,

T ′
k ≤

cx
T ′
m ⇒ P[Bk > b] ≤ P[Bm > b],

which in turn is equivalent to a stochastic order.

Appendix F. Proof of Theorem 1

Given the busy-period size B = b, denote the vector of spreads as Vk, where the ith element is given by

Vk(i) := Tk(i)− Tk(i + 1), 1 ≤ i ≤ b− 1. (F.1)

Note that the elements in the spread vector Vk have identical distributions but are dependent on one
another, unlike the service times of the infinite-server queue which are independent. We have

P FIFO

b = P[

b−1⋂

i=1

{Tk(i) < Xk(i) + Tk(i + 1)}].

20

since ith transaction needs to depart sooner than the (i + 1)th transaction. From the definition of spread
vector in (F.1), this is equal to

P FIFO

b = P[

b−1⋂

i=1

{Vk(i) < Xk(i)}],

= P[Tk(1) < Tk(2) < . . .] + P[

b−1⋂

i=1

{0 < Vk(i) < Xk(i)}]

=
1

b!
+

1

2
P[

b−1⋂

i=1

{|Vk(i)| < Xk(i)}],

since Vk is symmetric around zero. We individually have

|Vk(i)|
st
≥ |Vm(i)|, Xk(i)

st
≤ Xm(i), 1 ≤ i ≤ b,

which implies

|Vk(i)| −Xk(i)
st
≥ |Vm(i)| −Xm(i), 1 ≤ i ≤ b.

Since the spreads Vk(1), Vk(2), . . . are correlated, we use [19, Thm. 6.B.14] to prove the multi-variate
stochastic order

|Vk| −Xk

st
≥ |Vm| −Xm, (F.2)

since |Vk| −Xk and |Vm| −Xm share the same copula, defined in (D.3). From (F.2),

P FIFO

b (k)
st
≤ P FIFO

b (m)

This implies the order of tracking accuracies in (10) by marginalizing over the busy-period sizes since P FIFO

b

decreases in busy period b and the busy periods satisfy stochastic order, from Lemma 1.

Appendix G. Proof of Theorem 2

In order for (11) to hold, it suffices to show that

perm(Ak)|{Bk = b}
st
≥ perm(Am)|{Bm = b}, (G.1)

since the tracking accuracy under random matching is given by (B.3), and taking expectation over Bm and

Bk preserves the order since Bk

st
≥ Bm from Lemma 1. Since the perm(A) is the number of matchings for

biadjacency matrix A, more edges in A implies higher perm(A). Let [αk, βk] be the support of Tk and
[αm, βm] of Tm. From (B.1) for k, the departure of ith arrival has an edge with jth arrival, for 1 ≤ i < j ≤ b
iff.

αk ≤ Tk(i)−

j−1∑

a=i

Xk(a) ≤ βk. (G.2)

By definition of support bound, Tk(i) ≤ β a.s. Hence, the upper bound in (G.2) always holds. Since
Xk(i) ≥ 0, we have the probability of edge as

P[A(i, j) = 1] = F̄Tk
[αk +

j−1∑

a=i

Xk(a)]. (G.3)

21

Conditioning on the same arrival realizations Xk,Xm = x, from the definition of stochastic dominance,

F̄Tk
[αk +

j−1∑

a=i

x(a)] ≥ F̄Tm
[αk +

j−1∑

a=i

x(a)]

≥ F̄Tm
[αm +

j−1∑

a=i

x(a)],

when αk ≤ αm. Now since the functions are decreasing in x and Xk

st
≤ Xm, the order is preserved on

removing the conditioning. Hence, (G.1) holds implying (11).

Appendix H. Proof of Corollary 1

Let T ′
i := λTi for i = 1, 2 be the normalized service times and let X ′(i) be i.i.d. arrivals with unit rate.

For any positive variable T ′
1 and T ′

2 = cT ′
1 with 0 < c < 1, we have T ′

1

st
≥ T ′

2. First consider FIFO matching
rule,

|V1|
st
≥ |V2| = c|V1|, ∀0 < c ≤ 1, (H.1)

and hence, conditions in Theorem 1 for the order of accuracies under FIFO matching is satisfied.
For random matching rule, let [α, β] be the support of T ′

1. We have α > cα, and hence, the condition in
Theorem 2 is in fact, violated. We revisit the probability of having an edge in the biadjacency matrix A

PT ′

1
[A(i, j) = 1] = F̄T ′

1
[α+

j−1∑

k=i

x(i)].

For the service time T ′
2 = cT ′

1 with c < 1, we have

PT ′

2
[A(i, j) = 1] = F̄T ′

1
[α+

1

c

j−1∑

k=i

x(i)] ≤ PT ′

1
[A(i, j) = 1],

and hence, the result holds.

Appendix I. Proof of Theorem 4

Let T ′ := λT be the normalized service time and let X ′(i) be i.i.d. Poisson arrivals with unit rate. Given
the busy-period size B = b, we have

P FIFO

b |{B = b} = P[

b−1⋂

i=1

{T ′(i)− T ′(i+ 1) < X ′(i)}]

= E[exp (−

b∑

i=1

(T ′(i)− T ′(i + 1))+)]

= E[exp (−

b∑

i=1

ai,πT
′(i))|Π(T′) = π],

where ai,π = 0,±1 are fixed coefficients conditioned on the event that the service times T′ follow a certain

permutation π. Now exp (−
∑b

i=1 ai,πT
′(i)) is a concave function of

∑b
i=1 ai,πT

′(i) and all permutations π
of the service times are equiprobable at both the queues (since all the service times are i.i.d.).

22

On the lines of [19, Thm. 3.A.19], we can show that when T′
k and T′

m are conditioned on the same
permutation π,

T ′
k ≤

cx
T ′
m ⇒

b∑

i=1

ai,πT
′
k(i) ≤

cx

b∑

i=1

ai,πT
′
m(i).

Hence,
T ′
k ≤

cx
T ′
m ⇒ P FIFO

b (k)|{Bk = b} ≥ P FIFO

b (m)|{Bm = b}.

Since P FIFO

b is decreasing in b and the busy-period sizes at k and m follow the stochastic order, the order
carries through when we marginalize over the busy-period sizes.

Appendix J. Proof of Theorem 5

Let Tk and Tm be the sojourn times of the jobs in the two queues. The sojourn times satisfy

Xk

st
≤ Xm, Jk

st
≥ Jm ⇒ Tk(i)

st
≥ Tm(i).

Now Tk and Tm are correlated, unlike the infinite-server case. However, Tk and Tm have the same copula
since they are both processor sharing queues and by [19, Thm. 6.B.14],

Xk

st
≤ Xm, Jk

st
≥ Jm ⇒ Tk

st
≥ Tm.

On lines of Lemma 1,

Xk

st
≤ Xm, Tk

st
≥ Tm ⇒ Bk

st
≥ Bm.

Note that the lower bound of support of each sojourn time is the same as the job lengths. On lines
of Appendix G, (15) holds.

Appendix K. Proof of Theorem 6

We first provide a result that under the stochastic dominance assumption, the sojourn times of the
processor-sharing queue dominate those of the infinite-server queue.

Proposition 2. (Sojourn Times in Infinite Server and Processor Sharing Queues). We have

JPS

st
≥ TINF ⇒ TPS

st
≥ TINF. (K.1)

Proof: The multivariate ordering is implied by the conditional ordering

TPS(i)|

i−1⋂

k=1

{TPS(k) = tk}
st
≥ TINF.

Now the sojourn times TPS(i) at the processor-sharing queue are at least the job lengths with probability 1.
Hence, upon any conditioning

TPS(i)|

i−1⋂

k=1

{TPS(k) = tk}
st
≥ JPS(i), i = 1, 2,

Hence, the result in (K.1) holds. 2

The above result follows the intuition that when larger jobs are arriving to the processor-sharing queue
than to the infinite-server queue, the sojourn times in the processor-sharing queue are longer. However, the

23

converse is not always true since even longer jobs can have shorter sojourn times in the infinite-server queue
due to simultaneous processing of the jobs.

We now use the above proposition to provide a result on the busy-period sizes. From (K.1), we have the
multivariate stochastic order. Now,

XPS

st
≤ XINF,TPS

st
≥ TINF ⇒ BPS

st
≥ BINF,

on lines of Lemma 1. On lines of Theorem 2, we have (16).

[1] A. Anandkumar, C. Bisdikian, T. He, D. Agrawal, Selectively Retrofitting Monitoring in Distributed Systems, Seattle,
USA, 2009, workshop on Mathematical Performance Modeling and Analysis (MAMA).

[2] P. Bernstein, E. Newcomer, Principles of Transaction Processing, Morgan Kaufmann, 1997.
[3] A. Borr, Transaction monitoring in Encompass [TM]: Reliable distributed transaction processing, in: Proc. of VLDB,

1981.
[4] A. Spector, J. Swainson, D. Sabbah, Introduction to Transaction Processing, IBM Systems Journal 43 (2) (2004) 207–208.
[5] M. Aguilera, J. Mogul, J. Wiener, P. Reynolds, A. Muthitacharoen, Performance debugging for distributed systems of

black boxes, in: Proc. of SOSP, 2003, pp. 74–89.
[6] E. Thereska, B. Salmon, J. Strunk, M. Wachs, M. Abd-El-Malek, J. Lopez, G. Ganger, Stardust: tracking activity in a

distributed storage system, in: Proc. of ACM Sigmetrics, 2006, pp. 3–14.
[7] Application Response Management, http://www.opengroup.org/tech/management/arm.
[8] P. Barham, A. Donnelly, R. Isaacs, R. Mortier, Using Magpie for request extraction and workload modelling, in: Symp.

on Operating Sys. Design & Implementation, 2004.
[9] A. Anandkumar, C. Bisdikian, D. Agrawal, Tracking in a Spaghetti Bowl: Monitoring Transactions Using Footprints, in:

Proc. of ACM SIGMETRICS, Annapolis, Maryland, USA, 2008.
[10] J. Joyce, G. Lomow, K. Slind, B. Unger, Monitoring Distributed Systems, ACM Tran. on Computer Systems 5 (2) (1987)

121–150.
[11] K. Chandy, L. Lamport, Distributed Snapshots: Determining Global States of Distributed Systems, ACM Tran. on

Computer Systems 3 (1) (1985) 63–75.
[12] M. Mansouri-Samani, M. Sloman, Monitoring distributed systems, Network, IEEE 7 (6) (1993) 20–30.
[13] M. Schmid, M. Thoss, T. Termin, R. Kroeger, A Generic Application-Oriented Performance Instrumentation for Multi-Tier

Environments, in: IEEE Intl. Symposium on Integrated Network Management, 2007, pp. 304–313.
[14] M. Chen, E. Kiciman, E. Fratkin, A. Fox, E. Brewer, Pinpoint: problem determination in large, dynamic Internet services,

Dependable Sys. & Networks (2002) 595–604.
[15] M. Chen, A. Accardi, E. Kiciman, J. Lloyd, D. Patterson, A. Fox, E. Brewer, Path-based failure and evolution management,

in: Symposium on Networked System Design and Implementation, 2004, pp. 23–23.
[16] H. Liu, H. Zhang, R. Izmailov, G. Jiang, X. Meng, Real-time Application Monitoring and Diagnosis for Service Hosting

Platforms of Black Boxes, in: IEEE Intl. Symposium on Integrated Network Management, 2007, pp. 216–225.
[17] B. Tak, C. Tang, C. Zhang, S. Govindan, B. Urgaonkar, R. Chang, vPath: Precise Discovery of Request Processing Paths

from Black-Box Observations of Thread and Network Activities, in: Proc. of Usenix Annual Tech. Conf., 2009.
[18] M. Shaked, J. Shanthikumar, Stochastic Orders And Their Applications, Academic Press, 1994.
[19] M. Shaked, J. Shanthikumar, Stochastic Orders, Springer, 2007.
[20] A. Müller, D. Stoyan, Comparison Methods for Stochastic Models and Risks, Wiley, 2002.
[21] F. Baskett, K. Chandy, R. Muntz, F. Palacios, Open, closed, and mixed networks of queues with different classes of

customers, J. Assoc. Comput. Mach 22 (2) (1975) 248–260.

24

