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Graphical Models: Introduction

@ Graph structure G = (V, E) in the multivariate distribution of random
variables, with V' = {1,...,m}.
@ Nodes ¢ € V correspond to random variable X;.

@ Edges FE correspond to conditional independence relationships.

\% nbd YU
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From Conditional Independence to Gibbs Distribution

Hammersley-Clifford Theorem'71

Let P be joint pmf of model with graph
G=(V,E),

P(x) = 2 exp[Y Welxe)]
cel

where C is the set of maximal cliques.
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Tree Structured Graphical Models
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Tree Structured Graphical Models
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Tree Graphical Models: Tractable Learning & Inference

@ Maximum likelihood learning of tree structure is tractable
Chow-Liu Algorithm (1968)

@ Inference on tree models is tractable
Belief Propagation
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Tree Graphical Models: Tractable Learning & Inference
@ Maximum likelihood learning of tree structure is tractable
Chow-Liu Algorithm (1968)
@ Inference on tree models is tractable
Belief Propagation

What other classes of graphical models are tractable for learning and
inference?
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Graphical Models: Trees & Beyond

Analysis of Tree Structure Learning: Extremal Trees for Learning

Star Chain

Structure Learning in Graphical Models Beyond Trees

Forests Latent Trees Random Graphs

It 'f%.
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High Dimensional Learning of Graphical Models

@ Given n i.i.d. samples x™ from model P with structure G
o Information about model class, e.g., trees, forests, latent trees etc.

o Output estimated structure G and model P

Structural Consistency

lim Pr({x": G" #G}) = 0.

Sample Complexity: High Dimensional Regime
@ m is number of observed nodes in the graphical model.
@ m can be large compared to n

@ When n > f(m;9), Pepr(n) < 6, for every 6 > 0, then sample
complexity is Q(f(m))

Structure Learning Algorithms with Low Sample Complexity
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Outline

@ Introduction
@ Summary of Results

© Learning Latent Tree Distributions

© Learning Graphical Models on Random Graphs

@ Related Topics & Conclusion
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Result 1: Learning Latent Tree Models

@ Latent tree model is a tree model on
W =VUH
@ Visible Nodes V', Hidden Nodes H.

Latent Tree Reconstruction
@ Given n IID samples from node set V, estimate latent tree model

@ No knowledge on number of hidden variables
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Result 1: Learning Latent Trees Contd.,

Reconstruction of general latent tree models from samples

@ Propose two novel algorithms under unified approach for Gaussian
and discrete models

@ Provide theoretical guarantees: consistency, computational and
sample complexities

» Structural and risk consistency for any minimal latent tree
» Sample complexity of Q(logm) for m observed nodes when effective

depth is constant
» Low computational complexity

@ Experimental results demonstrate efficiency of methods

M.J. Choi, V. Tan, A. Anandkumar & A. Willsky, “Learning Latent Tree Graphical
Models,” Submitted to J. of Machine Learning Research, available on Arxiv.
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Result 2: Learning Random Graphs

@ Binary discrete (Ising) model on Erdés-Rényi
random graphs Gy, ~ G(m,c/m)

@ n samples available at nodes to estimate
structure

Challenges
@ Random graphs have many large degrees nodes

@ Previous algorithms cannot guarantee consistent estimation

Intuitions
@ Random graphs are locally tree-like

@ Correlation decay: Effect of faraway nodes negligible, model behaves
locally as a tree distribution

A. Anandkumar, V. Tan, A. S. Willsky “High Dimensional Structure Learning of Ising Models on Sparse Random Graphs,”
preprint on webpage.
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Result 2: Learning Random Graphs Contd.,

@ Propose two local algorithms

@ Analyze structure learning performance under correlation decay

Conditional Mutual Information Thresholding
@ Consistent structure learning under correlation decay

@ Require number of samples n = w(log m)

Correlation Thresholding
@ Finite edit distance under correlation decay
@ Consistent structure reconstruction under additional conditions

@ Require number of samples n = Q(logm)

Lower bound on sample complexity

Require n = Q(clogm) samples to estimate random graphical structures
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Related Work in Structure Learning

Efficient Algorithms for Structure Learning
@ ML for trees: Max. weight spanning tree with mutual information
weights (Chow & Liu 68)
@ Causal dependence trees: directed mutual information (Quinn,
Coleman & Kiyavash ‘10)
@ Tree augmented models: (Santhanam, Dingel, & Milenkovic, ‘09)

@ Convex relaxation methods: ¢; regularization

Gaussian Graphical Models (Meinshausen and Buehlmann 2006)
Logistic regression for Ising models (Ravikumar et. al. 10)

@ Brute-force conditional independence test for bounded degree graphs
(Bresler et. al. ‘09)

@ Greedy modification for large-girth graphs under correlation decay
(Netrapalli et. al. ‘10)

@ Learning thin junction trees through conditional mutual information
tests (Chechetka et. al. '07)
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Related Work Contd.

Lower Bounds on Sample Complexity

@ Information-theoretic bounds for bounded degree graphs (Santhanam
& Wainwright ‘08, Wang et. al. ‘10)

@ Strong converse bounds for bounded degree graphs (Mitliagkas &
Vishwanath ‘10)

Latent Graphical Models

@ Neighborhood joining: Fast implementation but large sample
complexity (Saitou & Nei ‘87)

@ Quartet methods: Local tests but non-trivial merging (Erdos et. al
99, Attenson 99, Daskalakis et al. 06)

@ Expectation Maximization: Greedy local structural search (Kemp &
Tenenbaum 08, Zhang & Kocka 04, Elidan & Friedman 05)

@ Convex Methods: Sparse observed graph and small number of hidden
variables (Chandrasekaran et. al. '10)
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Latent Tree Model

@ Visible Nodes V', Hidden Nodes H
and W =VUH

o T'=(W,E) is a tree on W

Latent Tree Reconstruction
Given n |ID samples from node set V/, reconstruct latent tree model
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Information Distances [d; ;] on Tree Models

0

Gaussian Model: Xy ~ N(0,X), d;; == —log|pij|, pij := 5]2
12455
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Information Distances [d; ;] on Tree Models

0

Gaussian Model: Xy ~ N(0,X), d;; == —log|pij|, pij := 5]2
12455

Discrete Symmetric Model

o X;e{1,2,...,K} and for 6;; € (0,1/K), 1-0
1— (K —1)0; if 2, = 0 0
P(xl|x]): {9 ( ) J ITx X 0 -
ijs 0.W.

@ node marginal is uniform
@ Distance is d; j := —log(1 — K0;;).
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Markov property on information distances

Markov Property on Trees: [d, ;| is a tree metric

di, = Z d; j,

(¢,j)€Path(k,l;E)

where Path(k,l; E') is the path from k to [ along edges F of tree.
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Minimal Tree Extensions

Minimal Tree Extension (Pearl 88)

Tree with least hidden variables explaining observed statistics

Conditions for Minimality
@ Each hidden variable has at least three neighbors: Leaves are visible

@ No two variables are perfectly dependent or independent:

0<i<dij<u<oo, V(ij)eE.

Th Ih

Minimal Non-minimal
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Siblings Test Based on Information Distances
Exact Statistics: Distances [d; ]
Let (I)ijk = d@k — deg.
0 —d; j<Pyjp="Dp <d;j Yk, k' #1i,j, < 1i,j leaves with common
parent
® &y =d;;, VEk #1i,j, <= iisaleaf and j is its parent.

.

Sample Statistics: ML Estimates [d; j]
Use only short distances: d; ;,d; < 7, Relax equality relationships
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Recursive Grouping: Example and Guarantees
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Recursive Grouping: Example and Guarantees
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Recursive Grouping: Example and Guarantees

e

Guarantees
@ Structural and estimation consistency for all minimal latent trees

@ Sample complexity of 2(logm) for m observed nodes when effective
depth is fixed

o Computational complexity of O(diam(T")m?).
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Overview of Chow-Liu Based Grouping

Shortcomings of Recursive Grouping
o Computationally intensive: check all observed node pairs as siblings

o Sibling test: local test. Error prone

Pre-processing to improve efficiency and accuracy

Build a Chow-Liu tree, rule out many pairs of observed nodes as siblings

S o

Reconstruct Latent Tree by Transforming Chow-Liu Tree
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Chow-Liu Tree on Observed Nodes
Chow-Liu tree: ML tree over observed nodes V/
o Pcy: Tree distribution closest (in KL-divergence) to the empirical

distribution

Pey, := argmin D(P||Q).
QETree

@ Chow-Liu algorithm: T, = argmax > I(]Se)
T=(V,E)eT e€E

@ Chow-Liu tree in terms of distance estimates

fCL = MST(V; a) = argmin d,.
T=(V.E)eT ‘p

[ -
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Relating Chow-Liu Tree with Latent Tree

Surrogate Sg(7) for node i: visible node with strongest correlation

Sg(i; Ty, V) := argmind, ;
JjeV

Properties of Chow-Liu Tree and Surrogacy
Neighborhood Preservation: for i,j € W with Sg(i) # Sg(j),

(i,4) € Ep = (Sg(i),Sg(4)) € MST(V;d).

Anima Anandkumar (UCI) Trees, Latent Trees & Beyond 11/08/2010
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Chow-Liu Grouping for General Latent Trees

@ Initialize tree estimate as Chow-Liu tree: T < Ty,

@ Pick an internal node 7 in Chow-Liu tree T, not visited before,

~

Recursive grouping over closed neighborhood nbd|i; T']

o In T, replace subtree over nbd[i;f] with output of recursive grouping
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Guarantees for Chow-Liu Grouping
@ Structural and estimation consistency for all minimal latent trees
@ Sample complexity of 2(logm) for m observed nodes when effective
depth is constant
@ Computational complexity of
O(m2logm 4 (No. of internal nodes in CL-tree) x (Max. Deg)?”.

Star: Latent Tree HMM: Latent Tree

.

Chow-Liu Tree
Chow-Liu Tree 0000 O
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Regularized Chow-Liu Grouping
@ Chow-Liu pre-processing step provides a natural means to tradeoff
accurate model fitting with model complexity
@ Can stop at any stage: tree with fewer no. of hidden variables

@ Relevant for real data: stopping rule through Bayesian information
criterion (BIC) score

BIC(T) := log P(x™;T) — C|H(T)|log n.
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BIC(T) := log P(x™;T) — C|H(T)|log n.
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Results on Data sets

S & P 100 Stock Data
@ Monthly returns of 84 companies in S&P 100.
@ Samples from 1990 to 2007.
@ Latent tree learned using CLNJ.

20 Newsgroups with 100 words
@ 16,242 binary samples of 100 words
o Latent tree learned using regCLRG.

Anima Anandkumar (UCI) Trees, Latent Trees & Beyond 11/08/2010

33 /52



S & P Monthly Returns
D

® @ @ @ e (9 ()

o @ @IRNITE® P® ® @ @6

@D@E@@@0 5 @O ¢

@ @@@@‘@cm

@D () @ @9 @G

CON®

NI DA\ PR P YN Iz
TEOOREB® & =L
R @ @ @@

(e Gow (o) @9 @
©

Anima Anandkumar (UCI) Trees, Latent Trees & Beyond 11/08/2010 34 /52



()
)

@ @
Slo@pealy
Q@[e\\®

@) (w)
(@) ()

@ @ @

(o0 G (o)

Anima Anandkumar (UCI)

(9

S & P Monthly Returns

@ @@$@ @

& @ (2)| @ Oy B ¢

CO@D @) ) @ @

o F
Trees, Latent Trees & Beyond

& @ @
pereRee! @ O g
CL LT Y o0 ) | s

@@ \{

@@

©



S & P Monthly Returns

()
® @ 7 ¢ @ M e
o @@ @INTE® RE® @ @ e
T ®®®@ "@@ &
S\ @ (n25) (st
@@
@@
QI gek
@@@ ®@®
@ @ @

Anima Anandkumar (UCI) Trees, Latent Trees & Beyond 11/08/2010 34 /52



S & P Monthly Returns

&®
@@9@@@@@

@ @ @

(e Gow (2 w

Trees, Latent Trees & Beyond 11/08/2010 34 /52



Newsgroup Data
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Setup: Ising Models on Random Graphs

%33‘51‘\?:%2.’-””
@ n samples available at nodes to estimate structure

@ Erdés-Rényi random graphs G,,, ~ G(m,c/m): each edge has
probability ¢/m

@ Ising Models (Binary Pairwise Model)
1
P(x) = — exp] Z Jiji;]
(4,5)eG

o For (2,]) € Gy, 0< Jnin < Ji,j < Jmax < 00
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Two Algorithms for Structure Learning
Correlation Thresholding (CT)

o Empirical Correlations from Samples: C"(i, j) := LS zi(k)x; (k)
° (’L?j) € a if é\n(z,‘]) > 5(Jrninyt]max)-
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Two Algorithms for Structure Learning
Correlation Thresholding (CT)

@ Empirical Correlations from Samples: an(i,j) = %22;1 xi(k)z;(k)
° (l’j) S a if 6”(17]) > 5(Jminz Jmax)-

Conditional Mutual Information Thresholding (CMIT)

@ Empirical Mutual Information from samples

~ ~ pn
rxy)y= Y Pay)log Pzy)
TEX yeY P (x) P (y)

where P is the type or the empirical distribution

o (i,j €Gif min TXZ-;X,-X >Enm
(i9) € G _min | T(X:X[X5) > &,
ISI<3
@ Threshold &, ,,: depends on no. of samples n and no. of nodes m:
parameter free
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Results on Conditional Mutual Information
Thresholding

@ Ising model on the random graph G, = (Vin, Ep) ~ G(m, %)
@ No. of samples n > M g,, log m, with lim,;, o gm = 00.

o Correlation decay: ctanh Jy. < 1.

Structural Consistency of CMIT
CMIT is consistent for a.e. graph G,,

lim  P[CMIT ({x"};&nm) # G = 0.

m,n—o0
n>Mgm logm
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Results on Correlation Thresholding

@ Number of samples n > M logm

o Correlation decay: ctanh Jy. < 1.

Edit Distance Guarantee for CT
Finite edit distance for a.e. graph

i P|CTUCH Y 0)AG] > w(1)] =0,
n>M logm

@ Assume homogeneity: 2 tanh? Jmax < tanh Join

Structural Consistency for CT
CT is consistent for a.e. G,

i P [CTHCE}0) # G| =

n>M logm
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Lower Bound on Sample Complexity

@ Proposed algorithms with performance guarantees and sample
complexities

@ Converse result: lower bound on sample complexity below which any
algorithm fails

o Gy, ~ G(m,c/m) for any ¢ < 0.5m: not required to be sparse

Converse Result
If n < eclogm for sufficiently small € > 0,

lim P(Gp, # G) = 1.

n—oo

Q(clog m) samples needed for random graph structure estimation.
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Proof Ideas: Conditional Mutual Information

Separators in Graphical Models

S\ A/]

Xi A Xj|XS — I(XZ,X]|X5') =0

Challenges
@ Structure learning through conditional mutual information testing

@ Large separator sets in general graphs
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Proof Ideas Contd.

Approximate Separator Sets .o

Subset of separator on short paths.

Bound on Approx. Separator Set
@ In random graphs, size of
separator is at most two
asymptotically
@ Short cycles do not overlap in
random graphs
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Proof Ideas Contd.

Approximate Separator Sets .o

Subset of separator on short paths.

Bound on Approx. Separator Set
@ In random graphs, size of
separator is at most two
asymptotically
@ Short cycles do not overlap in
random graphs

Decay of Conditional Mutual Information
@ Under correlation decay, short paths contain most of the information

o I(X;; X;|Xg) decays as the graph size grows
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Proof Ideas: Choice of Threshold ¢, ,,

Iin¢ (unknown)
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Proof Ideas: Choice of Threshold ¢, ,,

Iin¢ (unknown)

~

I"( X35 X1 X s3i,5))
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Proof Ideas: Choice of Threshold ¢, ,,

Iin¢ (unknown)

@ Threshold &, ,, depends both on the graph size m and number of

samples n

@ Asymptotically, &, ,, distinguishes edges and non-edges.
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Result 1: Error Exponent Tree Structure Learning
z 2 Pe'r‘r(n)

Perr(n) ~ CXp(*TLKp)

Error Exponent
Rate of exponential decay of prob. that estimated tree # true tree.

Results for discrete tree models
@ Error exponent as optimization of error rates for local events

@ In very-noisy regime, error exponent &~ SNR for learning.

V. Tan, A. Anandkumar, L. Tong, A. Willsky “A Large-Deviation Analysis of the
Maximum-Likelihood Learning of Markov Tree Structures,” submitted to IEEE Tran. on

Information Theory, on Arxiv.
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Result 1: Error Exponent for Tree Learning Contd.,

Extremal Tree Structures for Learning

For Gaussian distribution in very noisy learning regime
@ Star graphs are hardest to learn, Markov chains are easiest to learn.
@ Error exponent increases with tree diameter.

@ Keeping the correlations on edges fixed.
Pe'rr(n)

y
T Star

ree
Chai

n
*—o—0o 0o °

Chain

V. Tan, A. Anandkumar, A. Willsky “Learning Gaussian Tree Models: Analysis of Error
Exponents and Extremal Structures,” IEEE Tran. on Signal Proc., Vol. 58, No. 5, May 2010,
pp. 2701-2714.
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Result 2: Learning High-Dimensional Forests

!

@ High dimensional regime: both number of samples n and number of
nodes m grow.
@ Goal: learn forest distributions.

Intuitions
@ Learn tree models and remove “weak” edges to prevent overfitting
@ Challenge in edge thresholding: finite samples results in noisy edge
strengths
@ Regularized Threshold: as a function of number of samples n
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Result 2: Learning High-Dimensional Forests Contd.,

@ Propose CLThres, a thresholding algorithm: Chow-Liu Algorithm +
Threshold
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@ Propose CLThres, a thresholding algorithm: Chow-Liu Algorithm +
Threshold

@ Prove error rates: exponential decay of underestimation and
super-polynomial decay of overestimation errors for fixed-size models

@ Prove achievable scaling laws on (n,m, k) for consistent recovery in
high-dimensions.

n > max(Cy log' o (d — k), Cy log d), Vo >0

is achievable, where n: no. of samples, m: no. of nodes, k: no. of
edges.
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Result 2: Learning High-Dimensional Forests Contd.,

@ Propose CLThres, a thresholding algorithm: Chow-Liu Algorithm +
Threshold

@ Prove error rates: exponential decay of underestimation and
super-polynomial decay of overestimation errors for fixed-size models

@ Prove achievable scaling laws on (n,m, k) for consistent recovery in
high-dimensions.

n > max(Cy log' o (d — k), Cy log d), Vo >0

is achievable, where n: no. of samples, m: no. of nodes, k: no. of
edges.

Consistent estimation of forests is even when m grows polynomially in n

V. Tan, A. Anandkumar, A. Willsky “Learning High-Dimensional Markov Forest Distributions:

Analysis of Error Rates”, Submitted to J. of Machine Learning Research, available on Arxiv.
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Conclusion

Learning Latent Tree Models

@ Proposed two novel algorithms under unified approach for Gaussian
and discrete latent tree models

@ Consistency, computational and sample complexities

Structural and estimation consistency for any minimal latent tree
Sample complexity of Q(logm) for m observed nodes for fixed depth
Low computational complexity

Learning Random Graphical Models
@ Proposed two local algorithms
@ Provided guarantees under correlation decay

@ Efficient structure learning

http://newport.eecs.uci.edu/anandkumar
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