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Motivation Using Contextual Object Recognition
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Graphical Models: Introduction

Graph structure G = (V,E) in the multivariate distribution of random
variables, with V = {1, . . . ,m}.
Nodes i ∈ V correspond to random variable Xi.

Edges E correspond to conditional independence relationships.

V \{nbd(i) ∪ i}

i

nbd(i)

Xi ⊥⊥ XV \{nbd(i)∪i}|Xnbd(i)

A

B

S

XA ⊥⊥ XB |XS
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From Conditional Independence to Gibbs Distribution

Hammersley-Clifford Theorem’71

Let P be joint pmf of model with graph
G = (V,E),

P (x) =
1

Z
exp[

∑

c∈C

Ψc(xc)].

where C is the set of maximal cliques.
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Tree Structured Graphical Models
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Tree Graphical Models: Tractable Learning & Inference

Maximum likelihood learning of tree structure is tractable
I Chow-Liu Algorithm (1968)

Inference on tree models is tractable
I Belief Propagation
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Tree Graphical Models: Tractable Learning & Inference

Maximum likelihood learning of tree structure is tractable
I Chow-Liu Algorithm (1968)

Inference on tree models is tractable
I Belief Propagation

What other classes of graphical models are tractable for learning and
inference?
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Graphical Models: Trees & Beyond

Analysis of Tree Structure Learning: Extremal Trees for Learning
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Structure Learning in Graphical Models Beyond Trees

Forests Latent Trees Random Graphs
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High Dimensional Learning of Graphical Models

Given n i.i.d. samples xn from model P with structure G

Information about model class, e.g., trees, forests, latent trees etc.

Output estimated structure Ĝ and model P̂

Structural Consistency

lim
n→∞

Pr({xn : Ĝn 6= G}) = 0.

Sample Complexity: High Dimensional Regime

m is number of observed nodes in the graphical model.

m can be large compared to n

When n > f(m; δ), Perr(n) < δ, for every δ > 0, then sample
complexity is Ω(f(m))

Structure Learning Algorithms with Low Sample Complexity
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Result 1: Learning Latent Tree Models

Latent tree model is a tree model on
W := V ∪H

Visible Nodes V , Hidden Nodes H.

Latent Tree Reconstruction

Given n IID samples from node set V , estimate latent tree model

No knowledge on number of hidden variables
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Result 1: Learning Latent Trees Contd.,

Reconstruction of general latent tree models from samples

Propose two novel algorithms under unified approach for Gaussian
and discrete models

Provide theoretical guarantees: consistency, computational and
sample complexities

I Structural and risk consistency for any minimal latent tree
I Sample complexity of Ω(logm) for m observed nodes when effective

depth is constant
I Low computational complexity

Experimental results demonstrate efficiency of methods

M.J. Choi, V. Tan, A. Anandkumar & A. Willsky, “Learning Latent Tree Graphical

Models,” Submitted to J. of Machine Learning Research, available on Arxiv.
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Result 2: Learning Random Graphs

Binary discrete (Ising) model on Erdős-Rényi
random graphs Gm ∼ G(m, c/m)

n samples available at nodes to estimate
structure

Challenges

Random graphs have many large degrees nodes

Previous algorithms cannot guarantee consistent estimation

Intuitions

Random graphs are locally tree-like

Correlation decay: Effect of faraway nodes negligible, model behaves
locally as a tree distribution

A. Anandkumar, V. Tan, A. S. Willsky “High Dimensional Structure Learning of Ising Models on Sparse Random Graphs,”

preprint on webpage.
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Result 2: Learning Random Graphs Contd.,

Propose two local algorithms

Analyze structure learning performance under correlation decay

Conditional Mutual Information Thresholding

Consistent structure learning under correlation decay

Require number of samples n = ω(logm)

Correlation Thresholding

Finite edit distance under correlation decay

Consistent structure reconstruction under additional conditions

Require number of samples n = Ω(logm)

Lower bound on sample complexity

Require n = Ω(c logm) samples to estimate random graphical structures
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Related Work in Structure Learning

Efficient Algorithms for Structure Learning

ML for trees: Max. weight spanning tree with mutual information
weights (Chow & Liu 68)

Causal dependence trees: directed mutual information (Quinn,
Coleman & Kiyavash ‘10)

Tree augmented models: (Santhanam, Dingel, & Milenkovic, ‘09)

Convex relaxation methods: `1 regularization
I Gaussian Graphical Models (Meinshausen and Buehlmann 2006)
I Logistic regression for Ising models (Ravikumar et. al. 10)

Brute-force conditional independence test for bounded degree graphs
(Bresler et. al. ‘09)

Greedy modification for large-girth graphs under correlation decay
(Netrapalli et. al. ‘10)

Learning thin junction trees through conditional mutual information
tests (Chechetka et. al. ‘07)
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Related Work Contd.

Lower Bounds on Sample Complexity

Information-theoretic bounds for bounded degree graphs (Santhanam
& Wainwright ‘08, Wang et. al. ‘10)

Strong converse bounds for bounded degree graphs (Mitliagkas &
Vishwanath ‘10)

Latent Graphical Models

Neighborhood joining: Fast implementation but large sample
complexity (Saitou & Nei ‘87)

Quartet methods: Local tests but non-trivial merging (Erdos et. al
99, Attenson 99, Daskalakis et al. 06)

Expectation Maximization: Greedy local structural search (Kemp &
Tenenbaum 08, Zhang & Kocka 04, Elidan & Friedman 05)

Convex Methods: Sparse observed graph and small number of hidden
variables (Chandrasekaran et. al. ‘10)
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Latent Tree Model

Visible Nodes V , Hidden Nodes H
and W := V ∪H

T = (W,E) is a tree on W

Latent Tree Reconstruction

Given n IID samples from node set V , reconstruct latent tree model
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Information Distances [di,j] on Tree Models

Gaussian Model: XW ∼ N(0,Σ), dij := − log |ρij|, ρij :=
Σij√
ΣiiΣjj
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Information Distances [di,j] on Tree Models

Gaussian Model: XW ∼ N(0,Σ), dij := − log |ρij|, ρij :=
Σij√
ΣiiΣjj

Discrete Symmetric Model

Xi ∈ {1, 2, . . . ,K} and for θij ∈ (0, 1/K),

P (xi|xj) =
{

1− (K − 1)θij if xi = xj

θij, o.w. θ

θ
00

1 1
1− θ

1− θ

node marginal is uniform

Distance is di,j := − log(1−Kθij).
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Markov property on information distances

Markov Property on Trees: [di,j] is a tree metric

dk,l =
∑

(i,j)∈Path(k,l;E)

di,j,

where Path(k, l;E) is the path from k to l along edges E of tree.
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Minimal Tree Extensions

Minimal Tree Extension (Pearl 88)

Tree with least hidden variables explaining observed statistics

Conditions for Minimality

Each hidden variable has at least three neighbors: Leaves are visible

No two variables are perfectly dependent or independent:

0 < l ≤ di,j ≤ u <∞, ∀ (i, j) ∈ E.

Minimal Non-minimal
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Siblings Test Based on Information Distances

Exact Statistics: Distances [di,j]

Let Φijk := di,k − dj,k.

−di,j<Φijk=Φijk′<di,j ∀ k, k′ 6= i, j, ⇐⇒ i, j leaves with common
parent

Φijk = di,j, ∀ k 6= i, j, ⇐⇒ i is a leaf and j is its parent.

Sample Statistics: ML Estimates [d̂i,j]

Use only short distances: di,k, dj,k < τ , Relax equality relationships
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Recursive Grouping: Example and Guarantees
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Recursive Grouping: Example and Guarantees

Guarantees

Structural and estimation consistency for all minimal latent trees

Sample complexity of Ω(logm) for m observed nodes when effective
depth is fixed

Computational complexity of O(diam(T̂ )m3).
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Overview of Chow-Liu Based Grouping

Shortcomings of Recursive Grouping

Computationally intensive: check all observed node pairs as siblings

Sibling test: local test. Error prone

Pre-processing to improve efficiency and accuracy

Build a Chow-Liu tree, rule out many pairs of observed nodes as siblings

Reconstruct Latent Tree by Transforming Chow-Liu Tree
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Chow-Liu Tree on Observed Nodes

Chow-Liu tree: ML tree over observed nodes V

P̂CL: Tree distribution closest (in KL-divergence) to the empirical
distribution

P̂CL := argmin
Q∈Tree

D(P̂ ||Q).

Chow-Liu algorithm: T̂CL = argmax
T=(V,E)∈T

∑
e∈E

I(P̂e)

Chow-Liu tree in terms of distance estimates

T̂CL = MST(V ; d̂) := argmin
T=(V,E)∈T

∑

e∈E

d̂e.
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Relating Chow-Liu Tree with Latent Tree

Surrogate Sg(i) for node i: visible node with strongest correlation

Sg(i;Tp, V ) := argmin
j∈V

di,j

Properties of Chow-Liu Tree and Surrogacy

Neighborhood Preservation: for i, j ∈W with Sg(i) 6= Sg(j),

(i, j) ∈ Ep ⇒ (Sg(i),Sg(j)) ∈MST(V ;d).
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Chow-Liu Grouping for General Latent Trees

Initialize tree estimate as Chow-Liu tree: T̂ ← T̂CL

Pick an internal node i in Chow-Liu tree T̂CL not visited before,
Recursive grouping over closed neighborhood nbd[i; T̂ ]

In T̂ , replace subtree over nbd[i; T̂ ] with output of recursive grouping
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Guarantees for Chow-Liu Grouping
Structural and estimation consistency for all minimal latent trees

Sample complexity of Ω(logm) for m observed nodes when effective
depth is constant

Computational complexity of
O(m2 logm+ (No. of internal nodes in CL-tree) × (Max. Deg)3.

Star: Latent Tree

Chow-Liu Tree

HMM: Latent Tree

Chow-Liu Tree
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Regularized Chow-Liu Grouping

Chow-Liu pre-processing step provides a natural means to tradeoff
accurate model fitting with model complexity

Can stop at any stage: tree with fewer no. of hidden variables

Relevant for real data: stopping rule through Bayesian information
criterion (BIC) score

BIC(T̂ ) := log P (xn; T̂ )− C|H(T̂ )| log n.
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Results on Data sets

S & P 100 Stock Data

Monthly returns of 84 companies in S&P 100.

Samples from 1990 to 2007.

Latent tree learned using CLNJ.

20 Newsgroups with 100 words

16,242 binary samples of 100 words

Latent tree learned using regCLRG.
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S & P Monthly Returns
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Newsgroup Data
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Setup: Ising Models on Random Graphs

n samples available at nodes to estimate structure

Erdős-Rényi random graphs Gm ∼ G(m, c/m): each edge has
probability c/m

Ising Models (Binary Pairwise Model)

P (x) =
1

Z
exp[

∑

(i,j)∈G

Ji,jxixj ]

For (i, j) ∈ Gn, 0 < Jmin ≤ Ji,j ≤ Jmax <∞
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Two Algorithms for Structure Learning

Correlation Thresholding (CT)

Empirical Correlations from Samples: Ĉn(i, j) := 1
n

∑n
k=1 xi(k)xj(k)

(i, j) ∈ Ĝ if Ĉn(i, j) > δ(Jmin, Jmax).
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Two Algorithms for Structure Learning

Correlation Thresholding (CT)

Empirical Correlations from Samples: Ĉn(i, j) := 1
n

∑n
k=1 xi(k)xj(k)

(i, j) ∈ Ĝ if Ĉn(i, j) > δ(Jmin, Jmax).

Conditional Mutual Information Thresholding (CMIT)

Empirical Mutual Information from samples

În(X;Y ) :=
∑

x∈X ,y∈Y

P̂n(x, y) log
P̂n(x, y)

P̂n(x)P̂n(y)
,

where P̂n is the type or the empirical distribution

(i, j) ∈ Ĝ if min
S⊂V \{i,j}

|S|≤3

Î(Xi;Xj |XS) > ξn,m

Threshold ξn,m: depends on no. of samples n and no. of nodes m:
parameter free

Anima Anandkumar (UCI) Trees, Latent Trees & Beyond 11/08/2010 38 / 52



Results on Conditional Mutual Information

Thresholding

Ising model on the random graph Gm = (Vm, Em) ∼ G(m, c
m
)

No. of samples n > Mgm logm, with limm→∞ gm =∞.

Correlation decay: c tanh Jmax < 1.

Structural Consistency of CMIT

CMIT is consistent for a.e. graph Gm

lim
m,n→∞

n>Mgm logm

P [CMIT ({xn}; ξn,m) 6= Gm] = 0.
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Results on Correlation Thresholding

Number of samples n > M logm

Correlation decay: c tanh Jmax < 1.

Edit Distance Guarantee for CT

Finite edit distance for a.e. graph

lim
m,n→∞

n>M logm

P

[∣∣∣CT({Ĉn
i,j}; δ)4Gm

∣∣∣ > ω(1)
]
= 0,

Assume homogeneity: 2 tanh2 Jmax < tanh Jmin

Structural Consistency for CT

CT is consistent for a.e. Gm

lim
m,n→∞

n>M logm

P

[
CT({Ĉn

i,j}; δ) 6= Gm

]
= 0
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Lower Bound on Sample Complexity

Proposed algorithms with performance guarantees and sample
complexities

Converse result: lower bound on sample complexity below which any
algorithm fails

Gm ∼ G(m, c/m) for any c ≤ 0.5m: not required to be sparse

Converse Result

If n ≤ εc logm for sufficiently small ε > 0,

lim
n→∞

P(Ĝm 6= Gm) = 1.

Ω(c logm) samples needed for random graph structure estimation.
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Proof Ideas: Conditional Mutual Information

Separators in Graphical Models

i

j
S

Xi ⊥⊥ Xj |XS ⇐⇒ I(Xi;Xj |XS) = 0

Challenges

Structure learning through conditional mutual information testing

Large separator sets in general graphs
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Proof Ideas Contd.

Approximate Separator Sets

Subset of separator on short paths.

Bound on Approx. Separator Set

In random graphs, size of
separator is at most two
asymptotically

Short cycles do not overlap in
random graphs

i

j

S
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Approximate Separator Sets

Subset of separator on short paths.

Bound on Approx. Separator Set

In random graphs, size of
separator is at most two
asymptotically

Short cycles do not overlap in
random graphs

i

j

S

Decay of Conditional Mutual Information

Under correlation decay, short paths contain most of the information

I(Xi;Xj |XS) decays as the graph size grows
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Proof Ideas: Choice of Threshold ξn,m

-

6

n

Iinf (unknown)
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-

6

n

Iinf (unknown)

În(Xi;Xj |XS(i,j))
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Proof Ideas: Choice of Threshold ξn,m

-

6

n

Iinf (unknown)

În(Xi;Xj |XS(i,j))

ξn,m

Threshold ξn,m depends both on the graph size m and number of
samples n

Asymptotically, ξn,m distinguishes edges and non-edges.
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Result 1: Error Exponent Tree Structure Learning

u

u

u u

@
@
@
@�

�
�
�

x4

x1

x3 x2

Perr(n) ∼ exp(−nKp)

n

Perr(n)

Error Exponent

Rate of exponential decay of prob. that estimated tree 6= true tree.

Results for discrete tree models

Error exponent as optimization of error rates for local events

In very-noisy regime, error exponent ≈ SNR for learning.

V. Tan, A. Anandkumar, L. Tong, A. Willsky “A Large-Deviation Analysis of the

Maximum-Likelihood Learning of Markov Tree Structures,” submitted to IEEE Tran. on

Information Theory, on Arxiv.
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Result 1: Error Exponent for Tree Learning Contd.,

Extremal Tree Structures for Learning

For Gaussian distribution in very noisy learning regime

Star graphs are hardest to learn, Markov chains are easiest to learn.

Error exponent increases with tree diameter.

Keeping the correlations on edges fixed.

Chain
Tree

Star

n

Perr(n)

Star

t

t

t

t

t

Chain

t t t t t

V. Tan, A. Anandkumar, A. Willsky “Learning Gaussian Tree Models: Analysis of Error

Exponents and Extremal Structures,” IEEE Tran. on Signal Proc., Vol. 58, No. 5, May 2010,

pp. 2701-2714.
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Result 2: Learning High-Dimensional Forests

Setup

High dimensional regime: both number of samples n and number of
nodes m grow.

Goal: learn forest distributions.

Intuitions

Learn tree models and remove “weak” edges to prevent overfitting

Challenge in edge thresholding: finite samples results in noisy edge
strengths

Regularized Threshold: as a function of number of samples n
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Result 2: Learning High-Dimensional Forests Contd.,

Propose CLThres, a thresholding algorithm: Chow-Liu Algorithm +
Threshold
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super-polynomial decay of overestimation errors for fixed-size models

Prove achievable scaling laws on (n,m, k) for consistent recovery in
high-dimensions.

n > max(C1 log
1+δ(d− k), C2 log d), ∀δ > 0

is achievable, where n: no. of samples, m: no. of nodes, k: no. of
edges.
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super-polynomial decay of overestimation errors for fixed-size models

Prove achievable scaling laws on (n,m, k) for consistent recovery in
high-dimensions.

n > max(C1 log
1+δ(d− k), C2 log d), ∀δ > 0

is achievable, where n: no. of samples, m: no. of nodes, k: no. of
edges.

Consistent estimation of forests is even when m grows polynomially in n

V. Tan, A. Anandkumar, A. Willsky “Learning High-Dimensional Markov Forest Distributions:

Analysis of Error Rates”, Submitted to J. of Machine Learning Research, available on Arxiv.
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Conclusion

Learning Latent Tree Models

Proposed two novel algorithms under unified approach for Gaussian
and discrete latent tree models

Consistency, computational and sample complexities
I Structural and estimation consistency for any minimal latent tree
I Sample complexity of Ω(logm) for m observed nodes for fixed depth
I Low computational complexity

Learning Random Graphical Models

Proposed two local algorithms

Provided guarantees under correlation decay

Efficient structure learning

http://newport.eecs.uci.edu/anandkumar
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