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Planning

Multi Armed Bandit

@ Single state,
@ Action with highest expectation reward.
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Planning

Markov Decision Process (MDP)

@ Fully Observable Environment: y = z.
@ Markovian Assumption:
> P(yitilae, yt)  Prelat, ye)

S
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Planning
Markov Decision Process (MDP)

Discounted Reward := max E A7y — Bellman Equation (0 < \ < 1)
™
t
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Planning
Markov Decision Process (MDP)

Discounted Reward := max E A7y — Bellman Equation (0 < \ < 1)
™
t

Q(CL, x) = IE['r(x, a)] +A Z P(x/|a7 x) H’ZE}X{Q(CLI, xl)}
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Planning
Markov Decision Process (MDP)

Discounted Reward := max E A7y — Bellman Equation (0 < \ < 1)
™
t

Q(CL, x) = E[r(x, a)] + A Z P(‘r/|a7 x) %@X{Q(alv xl)}

z/

Long Term Average Reward := max g r — Poisson Equation
™
¢
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Planning
Markov Decision Process (MDP)

Discounted Reward := maxz A7y — Bellman Equation (0 < \ < 1)
™

Q(CL, :17) = E[r(‘rv a)] + A Z P(x/|a7 :17) %@X{Q(alv xl>}

1:/

Long Term Average Reward := maxZ’rt — Poisson Equation
™

—_

s

)
2)Rr(x), Pr(a|x), nx
3)(I — P)V+ne=R; — V := (Performance Potential)
)
)

NPV + Ry = PV + Ry
5)m 7’
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Planning
Partially Observable Markov Decision Process (POMDP)

@ Partially Observability,
@ Transition Probability P(z|a;, x¢),
@ Observation Distribution P(y|z;).

7T
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Planning
Partially Observable Markov Decision Process (POMDP)

@ Partially Observability,

@ Transition Probability P(z|a;, x¢),
@ Observation Distribution P(y|z;).

7Y

Efficient Learning Algorithm by Tensor Methods,
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Planning
Partially Observable Markov Decision Process (POMDP)

@ Partially Observability,

@ Transition Probability P(z|a;, x¢),
@ Observation Distribution P(y|z;).

e

Efficient Learning Algorithm by Tensor Methods,

‘Learning part is solved, remaining part is the planning.
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Planning
Partially Observable Markov Decision Process (POMDP)

@ Distribution over states [b(x1),...,b(zy)],

@ Apply action a, and observe y,

P(yle’) >, P(a'|z,a)b
(o) = PUEIZ, PE i)
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Planning
Partially Observable Markov Decision Process (POMDP)

@ Distribution over states [b(x1),...,b(zy)],
@ Apply action a, and observe y,

P(yle’) >, P(a'|z,a)b
(o) = PUEIZ, PE i)

Bellman Equation: (0 < A < 1)

Q(a,b) =E[r(b,a)] + A > _ P(Va,b) maz/lX{Q(a', v}

bl
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Planning
Partially Observable Markov Decision Process (POMDP)

@ Distribution over states [b(x1),...,b(zy)],
@ Apply action a, and observe y,

P(yle’) >, P(a'|z,a)b
(o) = PUEIZ, PE i)

Bellman Equation: (0 < A < 1)

Q(a,b) =E[r(b,a)] + A > _ P(Va,b) maz/lX{Q(a', v}

bl
Belief point grows O((Y A)T)
PSpace-Complete — Point-Based VI
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Planning
Partially Observable Markov Decision Process (POMDP)

@ Memory Less Policy, Limited Memory Policy
m(atye, Ye—1,- -5 Yt—n+1)

order-n policy
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Planning
Partially Observable Markov Decision Process (POMDP)

@ Memory Less Policy, Limited Memory Policy
m(atye, Ye—1,- -5 Yt—n+1)

order-n policy

@ In some POMDP settings optimal policy is order-n policy,
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Planning
Partially Observable Markov Decision Process (POMDP)

@ Memory Less Policy, Limited Memory Policy
(@Yt Ye—1, -+ Yt—n+1)

order-n policy

@ In some POMDP settings optimal policy is order-n policy,

@ Advantages: Memory Efficient, no need to solve PSpace-Complete
problem,
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Planning
Partially Observable Markov Decision Process (POMDP)

@ Memory Less Policy, Limited Memory Policy
(@Yt Ye—1, -+ Yt—n+1)

order-n policy

@ In some POMDP settings optimal policy is order-n policy,

@ Advantages: Memory Efficient, no need to solve PSpace-Complete
problem,

@ Optimal Deterministic memoryless policy, [Yanjie Li], [John Loch].

Kamyar Azizzadenesheli (UCI) POMDP

7/1



Planning
Partially Observable Markov Decision Process (POMDP)

Optimal memoryless policy in general is stochastic,
Q-function is not contractive mapping,

Optimization Problem =

n= mgx;rt = m;LXZPW(x)R
x

Where R, ( ZZP ylx)m(aly)r(a,z).
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Planning
Partially Observable Markov Decision Process (POMDP)

Optimal memoryless policy in general is stochastic,
Q-function is not contractive mapping,

Optimization Problem =

n= mgx;rt = m;LXZPW(x)R
x

Where R, ( ZZP ylx)m(aly)r(a,z).

Solution??
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