Open Problem: Approximate Planning of POMDPs in the class of Memoryless Policies

Kamyar Azizzadenesheli

U.C. Irvine

Joint work with Prof. Anima Anandkumar and Dr. Alessandro Lazaric.
Motivation

- Agent-Environment Interaction.
Motivation

- Agent-Environment Interaction.
- Multi-Armed-Bandit
- Markov Decision Process (MDP)
- Partially Observable Markov Decision Process (POMDP)
- Full information → Planning → policy π
Planning

Multi Armed Bandit

- Single state,
- Action with highest expectation reward.
Planning

Markov Decision Process (MDP)

- Fully Observable Environment: $y = x$.
- Markovian Assumption:
 - $P(y_{t+1}|a_t, y_t) \ P(r_t|a_t, y_t)$
Planning

Markov Decision Process (MDP)

Discounted Reward := $\max_{\pi} \sum_{t} \lambda^t r_t \rightarrow$ Bellman Equation ($0 \leq \lambda < 1$)
Planning

Markov Decision Process (MDP)

Discounted Reward := $\max_\pi \sum_t \lambda^t r_t \rightarrow$ Bellman Equation ($0 \leq \lambda < 1$)

$$Q(a, x) = \mathbb{E}[r(x, a)] + \lambda \sum_{x'} P(x'|a, x) \max_{a'} \{Q(a', x')\}$$
Planning

Markov Decision Process (MDP)

Discounted Reward := \(\max_\pi \sum_t \lambda^t r_t \rightarrow \) Bellman Equation \((0 \leq \lambda < 1) \)

\[
Q(a, x) = \mathbb{E}[r(x, a)] + \lambda \sum_{x'} P(x'|a, x) \max_{a'} \{Q(a', x')\}
\]

Long Term Average Reward := \(\max_\pi \sum_t r_t \rightarrow \) Poisson Equation
Planning
Markov Decision Process (MDP)

Discounted Reward := \max_\pi \sum_t \lambda^t r_t \rightarrow \text{Bellman Equation} \ (0 \leq \lambda < 1)

\[Q(a, x) = \mathbb{E}[r(x, a)] + \lambda \sum_{x'} P(x'|a, x) \max_{a'} \{Q(a', x')\} \]

Long Term Average Reward := \max_\pi \sum_t r_t \rightarrow \text{Poisson Equation}

1) \pi
2) R_\pi(x), P_\pi(x'|x), \eta_\pi
3) (I - P_\pi)V + \eta e = R_\pi \rightarrow V := (\text{Performance Potential})
4) P_{\pi'}V + R_{\pi'} \succeq P_\pi V + R_\pi
5) \pi \leftarrow \pi'}
Planning

Partially Observable Markov Decision Process (POMDP)

- Partially Observability,
- Transition Probability $P(x_t|a_t, x_t)$,
- Observation Distribution $P(y_t|x_t)$.
Planning

Partially Observable Markov Decision Process (POMDP)

- Partially Observability,
- Transition Probability $P(x_t|a_t, x_t)$,
- Observation Distribution $P(y_t|x_t)$.

Efficient Learning Algorithm by Tensor Methods,
Planning

Partially Observable Markov Decision Process (POMDP)

- Partially Observability,
- Transition Probability $P(x_t|a_t, x_t)$,
- Observation Distribution $P(y_t|x_t)$.

Efficient Learning Algorithm by Tensor Methods,

Learning part is solved, remaining part is the planning.
Planning

Partially Observable Markov Decision Process (POMDP)

- Distribution over states \([b(x_1), \ldots, b(x_k)]\),

- Apply action \(a\), and observe \(y\),

\[
b'(x') = \frac{P(y|x') \sum_x P(x'|x,a)b(x)}{P(y|b,a)},
\]
Planning

Partially Observable Markov Decision Process (POMDP)

- Distribution over states $[b(x_1), \ldots, b(x_k)]$,

- Apply action a, and observe y,

$$b'(x') = \frac{P(y|x') \sum_x P(x'|x,a) b(x)}{P(y|b,a)},$$

Bellman Equation: $(0 \leq \lambda < 1)$

$$Q(a, b) = \mathbb{E}[r(b, a)] + \lambda \sum_{b'} P(b'|a, b) \max_{a'} \{Q(a', b')\}. $$
Planning

Partially Observable Markov Decision Process (POMDP)

- Distribution over states $[b(x_1), \ldots, b(x_k)]$,

- Apply action a, and observe y,

$$b'(x') = \frac{P(y|x') \sum_x P(x'|x,a)b(x)}{P(y|b,a)},$$

Bellman Equation: $(0 \leq \lambda < 1)$

$$Q(a, b) = \mathbb{E}[r(b, a)] + \lambda \sum_{b'} P(b'|a, b) \max_{a'} \{Q(a', b')\}.$$

Belief point grows $O((YA)^T)$

PSPACE-Complete \rightarrow Point-Based VI
Planning

Partially Observable Markov Decision Process (POMDP)

- Memory Less Policy, Limited Memory Policy
 \[\pi(a_t|y_t, y_{t-1}, \ldots, y_{t-n+1}) \]

 order-n policy
Planning
Partially Observable Markov Decision Process (POMDP)

- Memory Less Policy, Limited Memory Policy
 \[\pi(a_t | y_t, y_{t-1}, \ldots, y_{t-n+1}) \]
 order-n policy

- In some POMDP settings optimal policy is order-n policy,
Planning
Partially Observable Markov Decision Process (POMDP)

- Memory Less Policy, Limited Memory Policy
 $$\pi(a_t | y_t, y_{t-1}, \ldots, y_{t-n+1})$$

- In some POMDP settings optimal policy is order-n policy,

- Advantages: Memory Efficient, no need to solve PSpace-Complete problem,
Planning
Partially Observable Markov Decision Process (POMDP)

- **Memory Less Policy, Limited Memory Policy**
 \[\pi(a_t | y_t, y_{t-1}, \ldots, y_{t-n+1}) \]

 order-n policy

- In some POMDP settings **optimal policy** is order-n policy,

- Advantages: Memory Efficient, no need to solve PSpace-Complete problem,

- Optimal Deterministic memoryless policy, [Yanjie Li], [John Loch].
Planning

Partially Observable Markov Decision Process (POMDP)

Optimal memoryless policy in general is stochastic,

Q-function is not contractive mapping,

Optimization Problem \[\eta = \max_{\pi} \sum_t r_t = \max_{\pi} \sum_x P_{\pi}(x)R_{\pi}(x) \]

Where \[R_{\pi}(x) = \sum_a \sum_y P(y|x)\pi(a|y)r(a,x). \]
Planning

Partially Observable Markov Decision Process (POMDP)

Optimal memoryless policy in general is **stochastic**,

Q-function is not **contractive mapping**,

Optimization Problem \[\eta = \max_\pi \sum_t r_t = \max_\pi \sum_x P_\pi(x) R_\pi(x) \]

Where \[R_\pi(x) = \sum_a \sum_y P(y|x) \pi(a|y) r(a, x) . \]

Solution??
Thank You!