Reinforcement Learning in Rich-Observation MDPs using Spectral Methods

Kamyar Azizzadenesheli, Alessandro Lazaric, Animashree Anandkumar

*University of California, Irvine (UCI) †Institut National de Recherche en Informatique et en Automatique, (INRIA)

Reinforcement Learning

Agent-Environment interactions under uncertainty:
- Policy \(\pi(a|y) \) : \(X \rightarrow A \)
- Goal: \(\max \theta = \max \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} r_i \)
- No prior knowledge
- Learning (Exploring)
- Planning (Exploiting)
- Undiscounted average reward

SL-UC

Start

Initial policy \(\pi \)

Observe current \(y \)

Apply the action on the environment \(\pi(a|y) \)

Observe reward \(r \)

Is the number of samples at least for one pair of \((s, a) \) doubled?

Yes

No

Find the optimal policy w.r.t. optimistic aux-model

Construct the plausible set of Aux-MDP

Observation \(y \)

Action \(a \)

Reward \(r \)

State \(s \)

Large MDPs

Structured MDPs
- Rich-Observation MDP (ROMDP)
- Injective mapping from \(s \) to \(y \)
- Known mapping \(\Rightarrow \text{Regret}(T) = \tilde{O}\left(D_T X \sqrt{AT}\right) \)
- No Prior knowledge \(\Rightarrow \) Learn the mapping

Tensor Decomposition:
- Multiview model condition on middle action and middle state

Tensor Moments
- \(V_i = \mathbb{P}(y|s_i, a_i = 1) \)
- \(V_i(0) = \mathbb{E}(y|s_i, a_i = 1) \in \mathbb{R}^{Y \times X} \)

\(E[\omega_1 \otimes \omega_2 \otimes \nu_1 \otimes \nu_2 | s_i] = \sum_{a_i \in A} \omega_1(a_i) \otimes V_i(0) \)

Parameter Learning

Second and Third order moments given middle action

\(M_i^{(2)} = \sum_{a_i \in A} \omega_1(a_i) \otimes V_i(0) \otimes V_i(0) \)

\(M_i^{(3)} = \sum_{a_i \in A} \omega_1(a_i) \otimes V_i(0) \otimes V_i(0) \otimes V_i(0) \)

Confidence intervals

\(\| \hat{O}_{i} - \hat{O}_{i} \| = \tilde{O}\left(\frac{\sqrt{Y \cdot T}}{\sqrt{N}}\right) \)

Multiview Model

Random ROMDPs: \(X = 5, A = 4, Y = 20 \)

Random MDPs: \(X = 10, 20, 30 \), and \(A = 4 \)

Results

Theorem: SL-UC achieves a regret of

\(\text{Regret}(T) = \tilde{O}\left(D_T X \sqrt{AT}\right) \)

- Observation independent regret,
- Optimal regret (UCRL)

\(\text{Regret}(T) = \tilde{O}\left(D_T Y \sqrt{AT}\right) \)

- Per epoch computation reduction \(O(Y^3) \rightarrow O(X) \)
- Linearly reducing the number of epochs.

Clustering rate: A random ROMDP \((X = 4, A = 4, Y = 20) \)

Average Reward

Random MDPs: with \(X = [10, 20, 30] \), and \(A = 4 \)

UCRL: The Optimal algorithm
- DQN: 3 hidden layers, 30 hyperbolic tangent units at each layer with RMSprop update
- Gridworld: [Johnson et al., 2016]