
Foundations and Trends R© in Machine Learning

Spectral Learning on Matrices and
Tensors

Suggested Citation: Majid Janzamin, Rong Ge, Jean Kossaifi and Anima Anandkumar
(2019), Spectral Learning on Matrices and Tensors, Foundations and Trends R© in Machine
Learning: Vol. 12, No. 5-6, pp 393–536. DOI: 10.1561/2200000057.

Majid Janzamin
Twitter

majid.janzamin@gmail.com

Rong Ge
Duke University

rongge@cs.duke.edu

Jean Kossaifi
Imperial College London

jean.kossaifi@imperial.ac.uk

Anima Anandkumar
NVIDIA & California Institute of Technology

anima@caltech.edu

This article may be used only for the purpose of research, teaching,
and/or private study. Commercial use or systematic downloading
(by robots or other automatic processes) is prohibited without ex-
plicit Publisher approval. Boston — Delft

Contents

1 Introduction 395
1.1 Method of Moments and Moment Tensors 397
1.2 Warm-up: Learning a Simple Model with Tensors 398
1.3 What’s Next? . 401

2 Matrix Decomposition 402
2.1 Low Rank Matrix Decomposition 402
2.2 Low Rank Matrix Approximation and SVD 406
2.3 Principal Component Analysis 411
2.4 Whitening Transformation 414
2.5 Canonical Correlation Analysis 416

3 Tensor Decomposition Algorithms 420
3.1 Transition from Matrices to Tensors 420
3.2 Tensor Preliminaries and Notations 424
3.3 Uniqueness of CP decomposition 429
3.4 Orthogonal Tensor Decomposition 430
3.5 Tensor Power Iteration 444
3.6 Simultaneous Diagonalization 456
3.7 Alternating Least Squares 459

4 Applications of Tensor Methods 464
4.1 Pure Topic Model Revisited 465
4.2 Beyond Raw Moments . 467
4.3 Multi-view Models . 472
4.4 Nonlinear Model: Noisy-Or Networks 478
4.5 Applications in Supervised Learning 480
4.6 Other Models . 486

5 Practical Implementations 488
5.1 Programming Language and Framework 488
5.2 Tensors as NumPy Arrays 489
5.3 Basic Tensor Operations and Decomposition 492
5.4 Example: Image Compression via Tensor Decomposition . . 498
5.5 Going Further with TensorLy 500
5.6 Scaling up with PyTorch 501

6 Efficiency of Tensor Decomposition 505
6.1 Running Time and Memory Usage 505
6.2 Sample Complexity . 509

7 Overcomplete Tensor Decomposition 514
7.1 Higher-order Tensors via Tensorization 514
7.2 FOOBI Algorithm . 516
7.3 Third Order Tensors . 521
7.4 Open Problems . 524

Acknowledgements 526

References 527

Spectral Learning on Matrices and
Tensors
Majid Janzamin1, Rong Ge2, Jean Kossaifi3 and Anima Anandkumar4

1Twitter; majid.janzamin@gmail.com
2Duke University; rongge@cs.duke.edu
3Imperial College London; jean.kossaifi@imperial.ac.uk
4NVIDIA & California Institute of Technology; anima@caltech.edu

ABSTRACT

Spectral methods have been the mainstay in several domains
such as machine learning, applied mathematics and scientific
computing. They involve finding a certain kind of spectral
decomposition to obtain basis functions that can capture
important structures or directions for the problem at hand.
The most common spectral method is the principal compo-
nent analysis (PCA). It utilizes the principal components
or the top eigenvectors of the data covariance matrix to
carry out dimensionality reduction as one of its applications.
This data pre-processing step is often effective in separating
signal from noise.

PCA and other spectral techniques applied to matrices have
several limitations. By limiting to only pairwise moments,
they are effectively making a Gaussian approximation on
the underlying data. Hence, they fail on data with hidden
variables which lead to non-Gaussianity. However, in almost
any data set, there are latent effects that cannot be directly
observed, e.g., topics in a document corpus, or underlying
causes of a disease. By extending the spectral decomposition

Majid Janzamin, Rong Ge, Jean Kossaifi and Anima Anandkumar (2019), Spectral
Learning on Matrices and Tensors, Foundations and TrendsR© in Machine Learning:
Vol. 12, No. 5-6, pp 393–536. DOI: 10.1561/2200000057.

394

methods to higher order moments, we demonstrate the abil-
ity to learn a wide range of latent variable models efficiently.
Higher-order moments can be represented by tensors, and
intuitively, they can encode more information than just pair-
wise moment matrices. More crucially, tensor decomposition
can pick up latent effects that are missed by matrix methods.
For instance, tensor decomposition can uniquely identify
non-orthogonal components. Exploiting these aspects turns
out to be fruitful for provable unsupervised learning of a
wide range of latent variable models.

We also outline the computational techniques to design
efficient tensor decomposition methods. They are embarrass-
ingly parallel and thus scalable to large data sets. Whilst
there exist many optimized linear algebra software packages,
efficient tensor algebra packages are also beginning to be de-
veloped. We introduce Tensorly, which has a simple python
interface for expressing tensor operations. It has a flexible
back-end system supporting NumPy, PyTorch, TensorFlow
and MXNet amongst others. This allows it to carry out
multi-GPU and CPU operations, and can also be seamlessly
integrated with deep-learning functionalities.

1
Introduction

Probabilistic models form an important area of machine learning. They
attempt to model the probability distribution of the observed data, such
as documents, speech and images. Often, this entails relating observed
data to latent or hidden variables, e.g., topics for documents, words for
speech and objects for images. The goal of learning is to then discover
the latent variables and their relationships to the observed data.

Latent variable models have shown to be useful to provide a good
explanation of the observed data, where they can capture the effect of
hidden causes which are not directly observed. Learning these hidden
factors is central to many applications, e.g., identifying latent diseases
through observed symptoms, and identifying latent communities through
observed social ties. Furthermore, latent representations are very useful
in feature learning. Raw data is in general very complex and redundant
and feature learning is about extracting informative features from raw
data. Learning efficient and useful features is crucial for the performance
of learning tasks, e.g., the classification task that we perform using the
learned features.

Learning latent variable models is challenging since the latent vari-
ables cannot, by definition, be directly observed. In extreme cases, when

395

396 Introduction

there are more latent variables than observations, learning is theoreti-
cally impossible because of the lack of data, unless further constraints are
imposed. More generally, learning latent variable models raises several
questions. How much data do we need to observe in order to uniquely
determine the model’s parameters? Are there efficient algorithms to
effectively learn these parameters? Can we get provable guarantees on
the running time of the algorithm and the number of samples required
to estimate the parameters? These are all important questions about
learning latent variable models that we will try to address here.

In this monograph, we survey recent progress in using spectral
methods including matrix and tensor decomposition techniques to learn
many popular latent variable models. With careful implementation,
tensor-based methods can run efficiently in practice, and in many cases
they are the only algorithms with provable guarantees on running time
and sample complexity.

There exist other surveys and overviews on tensor decomposition
and its applications in machine learning and beyond. Among them, the
work by Kolda and Bader (2009) is very well-received in the community
where they provide a comprehensive introduction to major tensor de-
composition forms and algorithms and discuss some of their applications
in science and engineering. More recently, Sidiropoulos et al. (2017)
provide an overview of different types of tensor decompositions and
some of their applications in signal processing and machine learning.
Papalexakis et al. (2017) discuss several applications of tensor decom-
positions in data mining. Rabanser et al. (2017) review some basic
concepts of tensor decompositions and a few applications. Debals and
De Lathauwer (2017) review several tensorization techniques which had
been proposed in the literature. Here, tensorization is the mapping of a
vector or matrix to a tensor to enable us using tensor tools.

In contrast to the above works, our focus in this monograph is on a
special type of tensor decomposition called CP decomposition (see (1.3)
as an example), and we cover a wide range of algorithms to find the
components of such tensor decomposition. We also discuss the usefulness
of this decomposition by reviewing several probabilistic models that
can be learned using such tensor methods.

1.1. Method of Moments and Moment Tensors 397

1.1 Method of Moments and Moment Tensors

How can we learn latent variable models, even though we cannot observe
the latent variables? The key lies in understanding the relationship
between latent variables and observed variables. A common framework
for such relationship is known as the method of moments which
dates back to Pearson (1894).

Pearson’s 1-d Example: The main idea of method of moments is
to first estimate moments of the data, and use these estimates to
learn the unknown parameters of the probabilistic model. For a one-
dimensional random variable X ∈ R, the r-th order moment is denoted
by E[Xr], where r is a positive integer and E[·] is the expectation
operator. Consider a simple example where X is a mixture of two
Gaussian variables. More precisely, with probability p1, X is drawn
from a Gaussian distribution with mean µ1 and variance σ2

1, and with
probability p2, X is drawn from a Gaussian distribution with mean
µ2 and variance σ2

2. Here we have p1 + p2 = 1. Let us consider the
problem of estimating these unknown parameters given samples of X.
The random variable X can be viewed as drawn from a latent variable
model because given a sample of X, we do not know which Gaussian
it came from. Let latent variable Z ∈ {1, 2} be a random variable
with probability p1 of being 1. Then given Z, X is just a Gaussian
distribution as

[X|Z = z] ∼ N (µz, σ2
z).

As noted by Pearson (1894), even though we cannot observe Z,
the moments of X are closely related to the unknown parameters
(probabilities p1, p2, means µ1, µ2, standard deviations σ1, σ2) we desire
to estimate. More precisely, for the first three moments we have

E[X] = p1µ1 + p2µ2,

E[X2] = p1(µ2
1 + σ2

1) + p2(µ2
2 + σ2

2),
E[X3] = p1(µ3

1 + 3µ1σ
2
1) + p2(µ3

2 + 3µ2σ
2
2).

398 Introduction

The moments E[X],E[X2],E[X3], . . . can be empirically estimated
given observed data. Therefore, the equations above can be interpreted
as a system of equations on the six unknown parameters stated above.
Pearson (1894) showed that with the first 6-th moments, we have enough
equations to uniquely determine the values of the parameters.

Moments for Multivariate Random Variables of Higher Dimensions:
For a scalar random variable, its p-th moment is just a scalar number.
However, for a random vector, higher order moments can reveal much
more information. Let us consider a random vector X ∈ Rd. The first
moment of this variable is a vector µ ∈ Rd such that µi = E[Xi],∀i ∈ [d],
where [d] := {1, 2, . . . , d}. For the second order moment, we are not
only interested in the second moments of individual coordinates E[X2

i],
but also in the correlation between different coordinates E[XiXj], i 6= j.
Therefore, it is convenient to represent the second order moment as a
d× d symmetric matrix M , where Mi,j = E[XiXj].

This becomes more complicated when we look at higher order mo-
ments. For 3rd order moment, we are interested in the correlation
between all triplets of variables. In order to represent this compactly, we
use a 3-dimensional d×d×d object T , also known as a 3rd order tensor.
The tensor is constructed such that Ti,j,k = E[XiXjXk], ∀i, j, k ∈ [d].
This tensor has d3 elements or

(d+2
3
)
distinct entries. In general, p-th

order moment can be represented as a p-th order tensor with dp entries.
These tensors are called moment tensors. Vectors and matrices are
special cases of moment tensors of order 1 and 2, respectively.

In applications, it is often crucial to define what the random variable
X is, and examine what moments of X we can estimate from the data.
We now provide a simple example to elaborate on how to form a useful
moment and defer the proposal of many more examples to Section 4.

1.2 Warm-up: Learning a Simple Model with Tensors

In this section, we will give a simple example to demonstrate what is
a tensor decomposition, and how it can be applied to learning latent
variable models. Similar ideas can be applied to more complicated
models, which we will discuss in Section 4.

1.2. Warm-up: Learning a Simple Model with Tensors 399

h

x1 x2 xl· · ·

Figure 1.1: Pure Topic Model

Pure Topic Model: The model we consider is a very simple topic
model (Papadimitriou et al., 2000; Hofmann, 1999). In this model, there
are k unknown topics. Each topic entails a probability distribution
over words in the vocabulary. Intuitively, the probabilities represent the
likelihood of using a particular word when talking about a specific topic.
As an example, the word “snow” should have a high probability in the
topic “weather” but not the topic “politics”. These probabilities are
represented as a matrix A ∈ Rd×k, where d is the size of the vocabulary
and every column represents a topic. So, the columns of matrix A

correspond to the probabilities over vocabulary that each topic entails.
We will use µj ∈ Rd, j ∈ [k] to denote these probability distribution of
words given j-th topic (j-th column of matrix A).

The model assumes each document is generated in the following
way: first a topic h ∈ [k] is chosen with probability wh where w ∈ Rk is
a vector of probabilities; next, l words x1, x2, . . . , xl are independently
sampled from the h-th topic-word probability vector µh. Therefore, we
finally observe words for the documents. See Figure 1.1 for a graphical
illustration of this model. This is clearly a latent variable model, since
we don’t observe the topics. Our goal is to learn the parameters, which
include the topic probability vector w and the topic-word probability
vectors µ1, . . . , µk.

Computing the Moments: First, we need to identify what the inter-
esting moments are in this case. Since all we can observe are words in
documents, and documents are all generated independently at random,
it is natural to consider correlations between words as moments.

We say x ∈ Rd is an indicator vector of a word z in our size-d
vocabulary if the z-th coordinate of x is 1 and all other coordinates of

400 Introduction

x are 0. For each document, let x1, x2, x3 ∈ Rd be indicator vectors for
the first three words. Given these word representations, the entries of
the first three moments of x1, x2, x3 can be written as

M1(i) = Pr[x1 = ei],
M2(i1, i2) = Pr[x1 = ei1 , x2 = ei2],

M3(i1, i2, i3) = Pr[x1 = ei1 , x2 = ei2 , x3 = ei3],

where ei ∈ Rd denotes the i-th basis vector in d-dimensional space.
Intuitively, the first moment M1 represents the probabilities for words;
the second moment M2 represents the probabilities that two words
co-occur; and the third moment M3 represents the probabilities that
three words co-occur.

We can empirically estimate M1,M2,M3 from the observed doc-
uments. Now in order to apply the method of moments, we need to
represent these probabilities based on the unknown parameters of our
model. We can show that

M1 =
k∑

h=1
wh µh, (1.1)

M2 =
k∑

h=1
wh µhµ

>
h , (1.2)

M3 =
k∑

h=1
wh µh ⊗ µh ⊗ µh. (1.3)

The computation follows from the law of total expectations (explained
in more details in Section 4). Here, the first moment M1 is the weighted
average of µh; the second moment M2 is the weighted average of outer-
products µhµ>h ; and the third moment M3 is the weighted average of
tensor-products µh ⊗ µh ⊗ µh. The tensor product µh ⊗ µh ⊗ µh is a
d× d× d array whose (i1, i2, i3)-th entry is equal to µh(i1)µh(i2)µh(i3).
See Section 3 for more precise definition of the tensor product operator
⊗.

Note that the second moment M2 is a matrix of rank at most k,
and Equation (1.2) provides a low-rank matrix decomposition of M2.

1.3. What’s Next? 401

Similarly, finding wh and µh from M3 using Equation (1.3) is a problem
called tensor decomposition. Clearly, if we can solve this problem, and
it gives a unique solution, then we have learned the parameters of the
model and we are done.

1.3 What’s Next?

In the rest of this monograph, we will discuss the properties of tensor
decomposition problem, review algorithms to efficiently find the com-
ponents of such decomposition, and explain how they can be applied
to learn the parameters of various probabilistic models such as latent
variable models.

In Section 2, we first give a brief review of some basic matrix
decomposition problems, including the singular value decomposition
(SVD) and canonical correlation analysis (CCA). In particular, we will
emphasize why matrix decomposition is often not enough to learn all
the parameters of the latent variable models.

Section 3 discusses several algorithms for tensor decomposition. We
will highlight under what conditions the tensor decomposition is unique,
which is crucial in identifying the parameters of latent variable models.

In Section 4, we give more examples on how to apply tensor decom-
position to learn different latent variable models. In different situations,
there are many tricks to manipulate the moments in order to get a clean
equation that looks similar to (1.3).

In Section 5, we illustrate how to implement tensor operations in
practice using the Python programming language. We then show how
to efficiently perform tensor learning using TensorLy and scale things
up using PyTorch.

Tensor decomposition and its applications in learning latent variable
models are still active research directions. In the last two sections of
this monograph we discuss some of the more recent results, which deals
with the problem of overcomplete tensors and improves the guarantees
on running time and sample complexity.

2
Matrix Decomposition

In this chapter, we describe some basic applications of matrix decomposi-
tion techniques including singular value decomposition (SVD), Principle
Component Analysis (PCA) and canonical correlation analysis (CCA).
These techniques are widely used in data analysis, and have been cov-
ered in many previous books (see e.g., Golub and Van Loan, 1990; Horn
and Johnson, 2012; Blum et al., 2016).

The goal of this chapter is to give a brief overview of the matrix
decomposition techniques. At the same time we try to point out con-
nections and differences with relevant concepts in tensor decomposition.
Especially, in many cases these matrix-based methods have the problem
of ambiguity, and cannot be directly applied to learning parameters
for latent variable models. In the next section, we will describe how
these limitations can be solved by using tensor decomposition instead
of matrix decomposition.

2.1 Low Rank Matrix Decomposition

Assuming the reader is familiar with the basics of matrix algebra, we
will start with reviewing matrix decompositions and matrix rank. Rank
is a basic property of matrices. A rank-1 matrix can be expressed as

402

2.1. Low Rank Matrix Decomposition 403

= + + · · ·

Figure 2.1: Decomposition of a matrix M ∈ R5×4 as sum of the rank-1 components.
Note that each component is the product of a column vector uj and a row vector v>j .

the outer product of two vectors as uv> – its (i, j)-th entry is equal to
the product of the i-th entry of vector u denoted by u(i) and the j-th
entry of vector v denoted by v(j). Similarly, a matrix M ∈ Rn×m is of
rank at most k if it can be written as the sum of k rank-1 matrices as

M =
k∑
j=1

ujv
>
j . (2.1)

Here u1, u2, . . . , uk ∈ Rn and v1, v2, . . . , vk ∈ Rm form the rank-1 com-
ponents of the matrix M . We call Equation (2.1) a decomposition
of matrix M into rank-1 components; see Figure 2.1 for a graphical
representation of this decomposition for a sample matrix M ∈ R5×4.

In many practical applications, the entries of a matrix are often
determined by a small number of factors, and each factor corresponds
to a rank-1 matrix; see Equation (2.1). As a result, many matrices we
observe are close to low rank matrices (for exact definition of closeness
see Section 2.2).

We elaborate the application of low rank matrix decompositions
with the following example. Psychologist Charles Spearman worked on
understanding whether human intelligence is a composite of different
types of measurable intelligence and analyzed that through a factor
analysis (Spearman, 1904). Let us describe a highly simplified version
of his method, where the hypothesis is that there are exactly two kinds
of intelligence: quantitative and verbal. Suppose n students are taking
m different tests on distinct subjects. We can summarize the scores that
students get in different tests in a matrix M ∈ Rn×m. Each row lists
the scores for a student, and each column the scores for a particular
subject; see the score matrix example in Figure 2.2.

404 Matrix Decomposition

M
at
h.

C
la
ss
ic
s

Ph
ys
ic
s

M
us
ic




Alice 19 26 17 21
Bob 8 17 9 12

Carol 7 12 7 9
Dave 15 29 16 21
Eve 31 40 27 33

=

Verbal Quantitative


4
3
2
5
6




1
5
2
3


>

+


3
1
1
2
5




5
2
3
3


>

Figure 2.2: Score Matrix M is an example for the scores of students (indexing the
rows) in different tests on distinct subjects (indexing the columns). A corresponding
low rank decomposition is also provided where the rank is two in this example.

According to the simplified hypothesis, each student has different
quantitative and verbal strengths. Each subject also requires different
levels of quantitative and verbal skills or strength. Intuitively, a student
with higher strength on verbal intelligence should perform better on
a test that has a high weight on verbal intelligence. Therefore, as a
simplest model we can describe the relationship as a bi-linear function:

Score(student, test) = studentverbal-intlg. × testverbal (2.2)
+ studentquant-intlg. × testquant..

If we let uverbal, uquant. ∈ Rn be vectors that describe the verbal/quanti-
tative strength for each student, and let vverbal, vquant. ∈ Rm be vectors
that describe the requirement for each test, then we can write the score
matrix M as

M = uverbalv
>
verbal + uquant.v

>
quant.. (2.3)

Therefore, M is a rank 2 matrix! Here quantitative and verbal are two
factors that influence the result of the tests. The matrix M is low rank
because there are only two different factors. In general, this approach is
called factor analysis. See Figure 2.2 for an example of matrix M and
its corresponding rank 2 decomposition.

2.1. Low Rank Matrix Decomposition 405

M
at
h.

C
la
ss
ic
s

Ph
ys
ic
s

M
us
ic




Alice 19 26 17 21
Bob 8 17 9 12

Carol 7 12 7 9
Dave 15 29 16 21
Eve 31 40 27 33

=

Verbal Quantitative


4
3
2
5
6




1
5
2
3


>

+


3
1
1
2
5




5
2
3
3


>

=


1
2
1
3
1




1
5
2
3


>

+


3
1
1
2
5




6
7
5
6


>

Figure 2.3: Two possible decompositions of the score matrix M that we origi-
nally proposed in Figure 2.2. Note that the students verbal intelligence and tests
quantitative weights are different between two decompositions.

2.1.1 Ambiguity of Matrix Decomposition

As we described, decompositions like (2.3) are very useful as they
suggest the whole n×m matrix can be explained by a small number of
components. However, if we are not only interested in the number of
components, but also the exact values of the components (e.g., which
student is strongest in the quantitative tasks), such decompositions are
not sufficient because they are not unique. As an example, in Figure 2.3,
we give two different decompositions of the matrix we proposed earlier.

In fact, this phenomena of non-uniqueness of matrix decomposition
is very general. Consider a low rank decomposition M =

∑k
j=1 ujv

>
j ∈

Rn×m. Let U ∈ Rn×k be a matrix whose columns are uj ’s, and let
V ∈ Rm×k be a matrix whose columns are vj ’s. Then we can represent
M as

M =
k∑
j=1

ujv
>
j = UV >.

406 Matrix Decomposition

Now for any orthonormal matrix R ∈ Rk×k that satisfies RR> = R>R =
I, we have

M = UV > = URR>V > = (UR)(V R)>.

Therefore, UR, V R defines an equivalent decomposition, and its com-
ponents (columns of UR, V R) can be completely different from the
components in the original decomposition UV >. Later in Section 3.1
we will revisit this example and see why tensor decomposition can avoid
this ambiguity.

2.2 Low Rank Matrix Approximation and SVD

In practice, the matrix we are working on is often not exactly low rank.
The observed matrix can deviate from the low rank structure for many
reasons including but not limited to:

• The observed values can be noisy.

• The factors may not interact linearly.

• There might be several prominent factors as well as many small
factors.

Despite all these possible problems, the observed matrix can still be
approximately low rank. In such cases it is beneficial to find the low
rank matrix that is the closest to the observed matrix (in other words,
that best approximates it). In this section, we describe Singular Value
Decomposition (SVD) method which is an elegant way of finding the
closest low rank approximation of a matrix. To do so, we first define
matrix norms and provide a concrete notion of closeness in matrix
approximation.

2.2.1 Matrix Norms

Before talking about how to find the closest matrix, we need to first
define when two matrices are close. Closeness is often defined by a
distance function d(A,B) for two same-size matrices A and B. For
general matrices, the most popular distance functions are based on
matrix norms, i.e., d(A,B) = ‖A−B‖ for some matrix norm ‖ · ‖.

2.2. Low Rank Matrix Approximation and SVD 407

There are many ways to define norms of matrices. The Frobenius
norm and spectral/operator norm are the most popular ones.

Definition 2.1 (Frobenius norm). The Frobenius norm of a matrix M ∈
Rn×m is defined as

‖M‖F :=

√√√√ n∑
i=1

m∑
j=1

M2
i,j .

Frobenius norm is intuitive and easy to compute. However, it ignores
the matrix structure and is therefore equivalent to `2 norm when we
view the matrix as a vector. To understand the property of the matrix,
we can view the matrix as a linear operator, and define its operator
norm as follows.

Definition 2.2 (Matrix spectral/operator norm). The spectral or operator
norm of a matrix M ∈ Rn×m is defined as

‖M‖ := sup
‖v‖≤1

‖Mv‖,

where ‖ · ‖ denotes the Euclidean `2 norm for vectors.

The spectral norm measures how much the matrix can stretch a
vector that is inside the unit sphere.

Based on the above two norms, we can now define the closest low
rank matrices as

Mk := arg min
rank(N)≤k

‖M −N‖,

Mk,F := arg min
rank(N)≤k

‖M −N‖F .

Both optimization problems are non-convex and may seem difficult to
solve. Luckily, both of them can be solved by Singular Value Decompo-
sition. In fact they have exactly the same solution, i.e., Mk = Mk,F , as
we will see in the following section.

2.2.2 Singular Value Decomposition

For a matrix M , the Singular Value Decomposition (SVD) is a special
type of low rank decomposition where all the rank-1 components are
orthogonal to each other.

408 Matrix Decomposition

Definition 2.3 (Singular Value Decomposition(SVD), see Golub and Van
Loan, 1990 2.5.3 or Horn and Johnson, 2012 7.3.1). The singular value
decomposition of matrix M ∈ Rn×m is defined as

M = UDV > =
min{n,m}∑

j=1
σjujv

>
j ,

where U := [u1|u2| · · · |un] ∈ Rn×n and V := [v1|v2| · · · |vm] ∈ Rm×m are
orthonormal matrices such that U>U = I, V >V = I, andD ∈ Rn×m is a
diagonal matrix whose diagonal entries are σ1 ≥ σ2 ≥ · · · ≥ σmin{n,m} ≥
0. The uj ’s (respectively vj ’s) are called the left (respectively right)
singular vectors of M and σj ’s are called the singular values of M .

Note that when n < m, we often view D as a n×n diagonal matrix,
and V as an m×n orthonormal matrix because the extra columns of V
(columns indexed by n < j ≤ m) are not relevant in the decomposition.
Similarly when n > m, we often view U as a n×m matrix.

The top singular value σ1 is the largest singular value that is often
denoted as σmax(M), and the value σmin{n,m} is the smallest singular
value that is often denoted as σmin(M). We now describe the optimiza-
tion view-point of SVD where singular values are the maximum values of
the quadratic form u>Mv when both u and v have bounded `2 norms,
and the corresponding components (called singular vectors) are the
maximizers that are orthonormal vectors.

Definition 2.4 (Optimization view-point of the SVD, see Horn and Johnson,
2012 7.3.10). The top singular value σ1 is the maximum of the quadratic
form u>Mv when u and v have bounded `2 norm, and the top singular
vectors are the maximizers, i.e.,

σ1 = max
‖u‖≤1,‖v‖≤1

u>Mv,

u1, v1 = arg max
‖u‖≤1,‖v‖≤1

u>Mv.

The remaining values/vectors are obtained by maximizing the same
quadratic form, while constraining the singular vectors to be orthogonal

2.2. Low Rank Matrix Approximation and SVD 409

with all the previous ones, i.e.,

σj = max
‖u‖≤1,‖v‖≤1,∀i<j:u⊥ui,v⊥vi

u>Mv,

uj , vj = arg max
‖u‖≤1,‖v‖≤1,∀i<j:u⊥ui,v⊥vi

u>Mv.

As a result, we can also conclude that the spectral norm ofM is equal
to σ1, i.e., ‖M‖ = σ1, since ‖Mv‖ = max‖u‖≤1 u

>Mv. The singular
values and singular vectors are also closely related to the eigenvalues
and eigenvectors as we will demonstrate below.

Lemma 2.1 (SVD vs. eigen-decomposition, see Horn and Johnson, 2012
7.3.5). For a matrix M , the singular values σj ’s are the square roots of
the eigenvalues of MM> or M>M . The left singular vectors uj ’s are
eigenvectors ofMM>, and the right singular vectors vj ’s are eigenvectors
of M>M .

In Section 2.1.1, we described how low rank matrix decomposition is
not unique under orthogonal transformation of the rank-1 components.
For SVD, because of the specific structure of its singular vectors this is
not necessarily the case and in most cases Singular Value Decomposition
is unique.

Theorem 2.2 (Uniqueness of Singular Value Decomposition, see Horn and
Johnson, 2012 7.3.5). The SVD of matrix M defined in Definition 2.3
is unique (for the first min(n,m) columns of U, V) when the singular
values σj ’s are all distinct and nonzero.

Note that if n and m are different, say n < m, then the last m− n
columns of the matrix V can be an arbitrary orthogonal basis that is
orthogonal to the previous n right singular vectors, so that is never
unique. On the other hand, these columns in V do not change the
result of UDV >, so the decomposition

∑min{n,m}
j=1 σjujv

>
j is still unique.

Following the optimization view-point of SVD in Definition 2.4, it is
standard to sort the diagonal entries of D in descending order. In many
applications we only care about the top-k components of the SVD,
which suggests the following definition of truncated SVD.

410 Matrix Decomposition

Definition 2.5 (Truncated SVD, see Golub and Van Loan, 1990 2.5.4).
Suppose M = UDV > is the SVD of M ∈ Rn×m and entries of D
are sorted in descending order. Let U(k) ∈ Rn×k, V(k) ∈ Rm×k denote
the matrices only including the first k columns of U ∈ Rn×n, V ∈
Rm×m, respectively, and D(k) be the first k × k submatrix of D. Then
U(k)D(k)V

>
(k) is called the top-k (rank-k) truncated SVD of M .

The truncated SVD can be used to approximate a matrix, and it is
optimal in both Frobenius and spectral norms as follows.

Theorem 2.3 (Eckart-Young theorem(Eckart and Young, 1936): optimality
of low rank matrix approximation). Let M =

∑min{n,m}
j=1 σjujv

>
j be the

SVD of matrix M ∈ Rn×m, and Mk =
∑k
j=1 σjujv

>
j be the truncated

SVD of M . Then Mk is the best rank-k approximation of M in the
senses:

‖M −Mk‖ = σk+1 = min
rank(N)≤k

‖M −N‖,

‖M −Mk‖F =

√√√√√min{n,m}∑
j=k+1

σ2
j = min

rank(N)≤k
‖M −N‖F .

In addition to the above theoretical guarantees on the optimal-
ity of low rank matrix approximation, the SVD of a matrix can be
computed efficiently. For general matrices the computation takes time
O(nmmin{n,m}). The truncated SVD can usually be computed much
faster, especially when the k-th singular value σk is significantly larger
than the (k + 1)-th singular value (see Golub and Van Loan, 1990
Section 8.2, together with the discussions in Section 8.6).

We conclude this section by stating the application of SVD in
computing the pseudo-inverse of a matrix.

Definition 2.6 (Moore-Penrose Pseudo-inverse, see Moore, 1920; Bjer-
hammar, 1951; Penrose, 1955). Given a matrix M of rank k, suppose
its top-k truncated SVD is M = UDV >, then the pseudo-inverse of M
is defined as M † = V D−1U>.

2.3. Principal Component Analysis 411

Let Pr(= V V >) and Pc(= UU>) to be the projection matrix to the
row-span and column-span of M , respectively; the pseudo-inverse is the
only matrix that satisfies MM † = Pc and M †M = Pr.

In the next few sections we describe some of other major applications
of SVD to data analysis.

2.3 Principal Component Analysis

In this section, we describe Principle Component Analysis (PCA) (Pear-
son, 1901; Hotelling, 1933)) as one of the very important and use-
ful statistical methods for data analysis and transformation. Given
data points x1, x2, . . . , xn ∈ Rd that for simplicity we assume are cen-
tered (

∑n
i=1 xi = 0), we are often interested in the covariance matrix

M ∈ Rd×d:
M := 1

n

n∑
i=1

xix
>
i

to describe the statistical properties of the data. This matrix measures
how different coordinates of the data are correlated with each other.
The covariance matrix M is always positive semi-definite (PSD), and
for PSD matrices the SVD always has a symmetric structure such that
the left and right singular vectors are the same:

M = UDU> =
d∑
j=1

σjuju
>
j .

Given the covariance matrix, we can easily compute the variance of
the data when projected to a particular direction. Suppose v is a unit
vector, then we have

Var[〈v, x〉] = E[〈v, x〉2] = E[v>xx>v] = v>E[xx>]v = v>Mv.

Here we used the fact that matrices are linear operators, and the
linearity of the expectation. From this calculation and the optimization
view-point of SVD in Definition 2.4, it is immediately concluded that
the top singular vector u1 is the direction where the data has largest
variance when projected to that direction, i.e., yielding the maximum
1
n

∑n
i=1〈xi, v〉2. This direction is usually called the principal component

412 Matrix Decomposition

u2
u1

Figure 2.4: Geometric representation of principle components u1 and u2 for the
covariance matrix of data points xi’s.

as it is the direction where the data is the most “spread out”. Similarly,
the first k singular vectors u1, u2, . . . , uk spans a subspace that has
the maximum variance of all k-dimensional subspaces. Geometrically,
we can view the covariance matrix of the data as an ellipsoid, and u1
corresponds to the longest axis; see Figure 2.4 for such geometrical
representation in 2-dimensional space.

2.3.1 Dimensionality Reduction via PCA

Principal components can be used to form a lower dimensional subspace
and project the data to that subspace. This projection simplifies the
data to a much lower dimensional space, while maintaining as much
variance of the data as possible as we showed earlier. PCA is the most
popular tool for dimensionality reduction and the main linear technique
for doing that. In the case when the data is inherently low rank (recall
the test scores example in Section 2.1) but may have some noise, doing
PCA can often reduce the magnitude of noise (concrete settings where
this can be proved includes mixture of Gaussians, see e.g. Blum et al.,
2016 3.9.3).

We now formulate the dimensionality reduction problem more con-
cretely, and provide the guarantee on the optimality of PCA. Given n
data points x1, x2, . . . , xn ∈ Rd, we want to approximate these points
with their projection to a lower dimensional subspace in Rd. The ques-
tion is what is the best k-dimensional (k < d) affine subspace in Rd for

2.3. Principal Component Analysis 413

such approximations, in the sense that the average distance between
the original and approximate points is minimized, i.e.,

(P ∗, p∗0) := arg min
P∈Rd×d

p0∈Rd

1
n

∑
i∈[n]
‖xi − (Pxi + p0)‖2 , (2.4)

s. t. Rank(P) = k, P 2 = P.

Here, Pxi+p0 is the projection of xi to the k-dimensional affine subspace
in Rd. This projection is specified by projection operator P ∈ Rd×d

and displacement vector p0 ∈ Rd (Here, we assume the data points
are not necessarily centered). Note that since the projection is on a
k-dimensional subspace, we have Rank(P) = k. The following theorem
shows that PCA is the optimal solution to this problem. This can be
proved as a direct corollary of Theorem 2.3 on optimality of low rank
matrix approximation using SVD.

Theorem 2.4 (PCA is optimal solution of (2.4)). Given n data points
x1, x2, . . . , xn ∈ Rd, let µ ∈ Rd andM ∈ Rd×d denote the corresponding
mean vector and covariance matrix, respectively. Let M have SVD
decomposition (the same as eigen-decomposition here) M = UDU>.
Then, the optimal solutions of (2.4) are given by

P ∗ = U(k)U
>
(k),

p∗0 = (I − P ∗)µ,

where U(k) := [u1|u2| · · · |uk] ∈ Rd×k is the matrix including the top k
eigenvectors of M .

Proof: Fixing P , the p0 which minimizes cost function in (2.4) is
p∗0 = (I − P)µ. Therefore, we have∑

i∈[n]
‖xi − (Pxi + p0)‖2 =

∑
i∈[n]
‖(I − P)(xi − µ)‖2

=
∑
i∈[n]
‖xi − µ‖2 −

∑
i∈[n]
‖P (xi − µ)‖2 ,

where we used Pythagorean theorem in the last equality; see Figure 2.5
for its visualization. Therefore, the optimal solution P ∗ maximizes the

414 Matrix Decomposition

𝑥" − 𝜇
(𝑰− 𝑷)(𝑥" − 𝜇)

𝑷(𝑥" − 𝜇)

Figure 2.5: Visualization of the Pythagorean relation used in the proof of Theo-
rem 2.4.

variance of projected points into the lower dimensional subspace as

var(PX) = 1
n

∑
i∈[n]
‖P (xi − µ)‖2 = 1

n

∑
i∈[n]

(xi − µ)>P>P (xi − µ)

= 1
n

∑
i∈[n]

Tr
[
P (xi − µ)(xi − µ)>P>

]
= Tr

[
PMP>

]
.

From Rayleigh quotient argument, we know that for the case of k = 1,
the P ∗ which maximizes above is P ∗ = u1u

>
1 . Similar argument can be

extended to larger k which leads to P ∗ = U(k)U
>
(k). �

From the above proof, we again see that PCA selects the lower
dimensional subspace which has the maximum variance of projected
points. Of course, the quality of this approximation still depends on
the rank k that we choose. When the data is assumed to come from a
generative model, one can often compute k by looking for a spectral
gap (see e.g., Chapters 7 and 9 in Blum et al., 2016). In practice, one
can first choose an accuracy and then find the smallest k that achieves
the desired accuracy.

2.4 Whitening Transformation

Another popular application of Singular Value Decomposition is to trans-
form the data into isotropic position. We call a data set z1, z2, . . . , zn ∈

2.4. Whitening Transformation 415

Rd isotropic or whitened if the covariance matrix

Mz := 1
n

n∑
i=1

ziz
>
i = Id,

where Id denotes the d-dimensional identity matrix. This basically
means that the data has the same amount of variance in every direction.
Whitening transformation has been discovered and applied in many
domains (Friedman, 1987; Koivunen and Kostinski, 1999). The benefit
of whitening transformation is that the result is invariant under linear
transformations of the original data. Raw data is often not measured
in the most natural way – think again about the test score example in
Section 2.1, it is possible that a math exam is graded in 100 points and a
writing exam has points in the range of 0 to 5. A naïve algorithm might
incorrectly think that correlations with math exam is much more impor-
tant because the scale is 20 times more than the writing exam. However,
change of scaling is also a linear transformation, therefore applying
whitening transformation to the data can avoid these misconceptions.

In order to do this, suppose the original data is x1, x2, . . . , xn ∈ Rd

whose covariance matrix Mx := 1
n

∑n
i=1 xix

>
i is not the identity matrix.

Intuitively, we would like to shrink the directions that have more variance
and stretch the directions that have less variance. This can again be
done by SVD as follows. Recall Mx is a PSD matrix whose SVD can be
written as Mx = UDU>. Construct the whitening matrix

W := UD−1/2, (2.5)

and let zi := W>xi. Now we have

Mz := 1
n

n∑
i=1

ziz
>
i = W>MxW = D−1/2U>(UDU>)UD−1/2 = Id,

and hence, the transformed data points zi’s are isotropic.
Note that the result of whitening transformation can be very fragile

if the smallest singular value of the data is very close to 0; see the
inversion in D−1/2. In practice, whitening is often performed after we
identify the important directions using Principle Component Analysis.
Similar whitening idea is useful later for designing tensor decomposition
algorithms which we describe in Section 3.4.3.

416 Matrix Decomposition

2.5 Canonical Correlation Analysis

All of the techniques that we have discussed so far (SVD, PCA, whiten-
ing) focus on extracting the properties of a single data set. On the other
side, often in practice we would also like to understand relationships
between two different sets of data. In this section, we describe the
Canonical Correlation Analysis (CCA) (Hotelling, 1992)), which is a
very useful method to analyze the cross-covariance matrix between two
different data sets. Many of the concepts introduced earlier, such as
SVD and whitening, are used to describe the CCA.

Consider two sets of data points x1, x2, . . . , xn ∈ Rd1 and y1, y2, . . . , yn ∈
Rd2 . If we again use the test scores example from Section 2.1, the first
set of vectors xi would represent the performance of student i in dif-
ferent exams, while the second set of vectors yi would represent other
properties of the students, e.g., the student’s future salary. A natural
question is whether these two data sets are correlated. Intuitively, the
correlation between two directions u ∈ Rd1 and v ∈ Rd2 can be defined
as 1

n

∑n
i=1〈u, xi〉〈v, yi〉. However, this definition is not very robust – if

we apply a linear transformation to x (say we multiply the first co-
ordinate of x by 106), then the maximum correlation is likely to be
changed (in this case likely to have more weight on first coordinate of x).
Therefore, to measure correlations robustly and get rid of the influence
from individual data sets, Canonical Correlation Analysis tries to find
the maximum correlation after whitening both x and y; see Algorithm 1
for the details. In the remaining of this section, we describe how the
CCA algorithm is designed and works.

Let Mx,My be the covariance matrices of {xi}’s and {yi}’s, and let
Wx and Wy be the corresponding whitening matrices; see Algorithm 1
for the precise definitions. Let

x̃i := W>x xi, ỹi := W>y yi

be the whitened data. We would like to find the most correlated di-
rections in this pair of whitened data, i.e., we would like to find unit
vectors ũ, ṽ such that u>[1

n

∑n
i=1 x̃iỹ

>
i]v is maximized, i.e.,

ũ, ṽ := arg max
‖u‖=‖v‖=1

1
n

n∑
i=1
〈u, x̃i〉〈v, ỹi〉.

2.5. Canonical Correlation Analysis 417

Algorithm 1 Canonical Correlation Analysis (CCA)
input Two data sets x1, x2, . . . , xn ∈ Rd1 and y1, y2, . . . , yn ∈ Rd2

output Most cross-correlated directions between whitened pairs
1: Compute the covariance matrices

Mx := 1
n

n∑
i=1

xix
>
i , My := 1

n

n∑
i=1

yiy
>
i .

2: Use SVD to compute the whitening matrices Wx,Wy; see Equa-
tion (2.5).

3: Compute the correlation matrix

Mx̃ỹ := 1
n

n∑
i=1

W>x xiy
>
i Wy.

4: Use SVD to compute the left and right singular vectors {(ũj , ṽj)}
for Mx̃ỹ.

5: return (Wxũi,Wyṽi).

By Definition 2.4, it is immediate to see that ũ, ṽ are actually the left
and right top singular vectors of the cross-covariance matrix Mx̃ỹ :=
1
n

∑n
i=1 x̃iỹ

>
i , and this pair of directions are where the two data sets

are most correlated. It is also possible to define more pairs of vectors
(ũj , ṽj)’s that correspond to the smaller singular vectors of the same
matrix.

Often we would like to interpret the direction in the original data
sets instead of the whitened ones. To do that, we would like to find a
vector u such that 〈u, xi〉 = 〈ũ, x̃i〉. That is,

u>xi = ũ>x̃i = ũ>W>x xi,

and thus, we need to have

u = Wxũ.

On the other hand, by construction we have W>x MxWx = I, and
therefore, since ũ has unit norm, ũ>W>x MxWxũ = 1, which is to say

418 Matrix Decomposition

u>Mxu = 1 given above equality. Similarly, the fact that ũj and ũl are
orthogonal if j 6= l means that u>j Mxul = 0. In general, it is possible to
define a different inner product

〈uj , ul〉Mx := u>j Mxul,

and a corresponding vector norm ‖u‖Mx :=
√
u>Mxu, and the vectors

uj ’s will be orthonormal under this new inner product < ·, · >Mx .
Similarly, vj ’s should be orthonormal under the inner product < ·, · >My .
Using these constraints, we can describe Canonical Component Analysis
more precisely as below

Definition 2.7 (Canonical Correlation Analysis). Given two data sets
x1, x2, . . . , xn ∈ Rd1 and y1, y2, . . . , yn ∈ Rd2 (without loss of generality,
assume d1 ≤ d2), let

Mx := 1
n

n∑
i=1

xix
>
i , My = 1

n

n∑
i=1

yiy
>
i

be the corresponding covariance matrices, respectively. Canonical Corre-
lation Analysis (CCA) finds a set of correlated directions u1, u2, . . . , ud1

and v1, v2, . . . , vd1 such that u>j Mxuj = 1, v>j Myvj = 1. The top corre-
lated directions u1, v1 are similar to the top singular vectors as

u1, v1 = arg max
u>Mxu=1,v>Myv=1

1
n

n∑
i=1
〈u, xi〉〈v, yi〉.

Similarly, the remaining most correlated directions are defined as the
remaining singular vectors

uj , vj = arg max
u>Mxu = 1, v>Myv = 1

∀l < j u>Mxul = 0, v>Myvl = 0

1
n

n∑
i=1
〈u, xi〉〈v, yi〉.

The derivation of Canonical Correlation Analysis already gives an
efficient algorithm as provided in Algorithm 1. It is not hard to verify
the correctness of this algorithm, because after the linear transformsWx

and Wy, the objective and constraints in Definition 2.7 become exactly
the same as those in Definition 2.4.

2.5. Canonical Correlation Analysis 419

The idea of Canonical Correlation Analysis is widely used in data
analysis. In particular, CCA can find directions that are “aligned” in
two data sets. The same idea is also used in tensor decompositions to
“align” different views of the data, see Section 3.4.3.

Using the full SVD to compute the CCA can be expensive in practice.
Recently there have been several works that give efficient algorithms for
computing top CCA vectors over large data sets, e.g., see Wang et al.
(2016), Ge et al. (2016), Allen-Zhu and Li (2016b), and Allen-Zhu and
Li (2016a).

3
Tensor Decomposition Algorithms

In this chapter, we first introduce the basic concepts of tensors and
state the tensor notations that we need throughout this monograph.
In particular, we highlight why in many cases we need to use tensors
instead of matrices and provide the guarantees on uniqueness of tensor
decomposition. Then, we describe different algorithms for computing
tensor decomposition.

Most of the materials in this chapter has appeared in existing litera-
ture, especially in Anandkumar et al., 2014a. We do give more explana-
tions on the whitening procedure in Section 3.4.3 and symmetrization
procedure in Section 3.4.4, which were used in many previous papers
but were not explicitly discussed in their general forms. We also give
a new perturbation analysis for tensor power method together with
whitening procedure in Section 3.5.3, which will be useful for many of
the applications later in Section 4.

3.1 Transition from Matrices to Tensors

We can think of tensors as multi-dimensional arrays, and one of the eas-
iest ways to get a tensor is by stacking matrices of the same dimensions
resulting in third order tensors. Let us recall the test scores example

420

3.1. Transition from Matrices to Tensors 421

proposed in Section 2.1. Now suppose each exam has two parts – written
and oral. Instead of the single score matrix M that we had before, we
will now have two score matricesMwritten andMoral including the scores
for written and oral exams, respectively. Similar to the earlier score
matrix M , the rows of these matrices are indexed by students, and
their columns are indexed by subjects/tests. When we stack these two
matrices together, we get a n×m× 2 tensor, where the third dimension
is now indexed by the test format (written or oral). See the tensor in
the left hand side of Figure 3.1 as the stacking of two score matrices
Mwritten and Moral.

Recall the simplified hypothesis states that there are two kinds
of intelligence – quantitative and verbal; see Section 2.1 to review it.
Different students have different strengths, and different subjects/tests
also have different requirements. As a result, the score was assumed
to be a bilinear function of these hidden components; see (2.2). Now
with the third dimension, it is also reasonable to expect the two kind of
intelligence might behave differently in different formats – intuitively,
verbal skills might be slightly more important in oral exams. As a result,
we can generalize the bilinear function to a tri-linear form as

Score(student, test, format) =
studentverbal-intlg. × testverbal × formatverbal

+ studentquant-intlg. × testquant. × formatquant.,

where formatverbal and formatquant. denote the importance of verbal and
quantitative intelligence in different formats, respectively. Now similar
to what we did for the matrices, we can propose the following formula
as decomposing the tensor into the sum of two rank-1 components as

(Mwritten,Moral) = uverbal ⊗ vverbal ⊗ wverbal (3.1)
+ uquant. ⊗ vquant. ⊗ wquant..

Here ⊗ is the tensor/outer product operator which we will formally define
in the next subsection; see (3.5). uverbal, uquant. ∈ Rn and vverbal, vquant. ∈
Rm are the same as in Section 2.1, and the new components wverbal, wquant ∈
R2 correspond to verbal/quantitative importance for different formats,
e.g., wverbal(oral) denotes the importance of verbal intelligence in tests

422 Tensor Decomposition Algorithms

= +
Bob

M
a
th

Verbal

Alice

Dave

Carol

Eve

C
la
s
s
ic
s

P
h
y
s
ic
s

M
u
s
ic

Oral

Written

Quantitative

Figure 3.1: Graphical representation of CP decomposition for score tensor in (3.1).
The matrix slices (oral and written) share a 2D-decomposition along the first two
modes, and having the different weight factors in the third mode. The symbols ? and
◦ represent the importance weight factors for oral and written formats, respectively.

with oral format. This is a natural generalization of matrix decom-
position/rank to tensors, which is commonly referred to as the CP
(CANDECOMP/PARAFAC) (Hitchcock, 1927; Carroll and Chang,
1970; Harshman and Lundy, 1994)) decomposition/rank of tensors; we
will formally define that in (3.6). In fact, the tensor CP decomposi-
tion in (3.1) can be thought as a shared decomposition of matrices
Mwritten and Moral along the first two modes (corresponding to vectors
uverbal, uquant., vverbal, vquant.) with extra weight factors which are col-
lected in the third mode as vectors wverbal, wquant. This is graphically
represented in Figure 3.1.

Why using tensors instead of matrices? Until now going to the tensor
format just seems to make things more complicated. What additional
benefits do we get? One important property of tensor decomposition is
uniqueness. When we have only one matrix of test scores, the matrix
decomposition is not unique most of the time; recall Figure 2.3 where
we provided an example of this situation happening. The ambiguity
makes it hard to answer even some of the most basic questions such
as: which student has the best quantitative strength? On the other
hand, under mild conditions (see Section 3.3 for a formal discussion),
the tensor decomposition is unique! Finding the unique decomposition
allows us to pin down the vectors for students’ strengths.

3.1. Transition from Matrices to Tensors 423

For learning latent variable models and latent representations, the
uniqueness of tensor decomposition often translates to identifiability.
We say a set of statistics makes the model identifiable, if there is
only a unique set of parameters that can be consistent with what we
have observed. Matrix decompositions usually correspond to pairwise
correlations. Because of the ambiguities discussed earlier, for most latent
variable models, pairwise correlations do not make the model identifiable.
On the other hand, since tensor decompositions are unique, once we
go to correlations between three or more objects, the models become
identifiable. The example of learning a pure topic model was discussed
in Section 1.2 and many more examples are provided in Section 4.

Tensor decomposition has also applications in many other areas such
as chemometrics (Appellof and Davidson, 1981), neuroscience (Mocks,
1988), telecommunications (Sidiropoulos et al., 2000), data mining (Acar
et al., 2005), image compression and classification (Shashua and Levin,
2001), and so on; see survey paper by Kolda and Bader (2009) for more
references.

Difficulties in Working with Tensors: The benefit of unique decom-
position comes at a cost. Although we can usually generalize notions
for matrices to tensors, their counterpart in tensors are often not as
well-behaved or easy to compute. In particular, tensor (CP) decompo-
sition is much harder to compute than matrix decomposition. In fact,
almost all tensor problems are NP-hard in the worst-case (Hillar and
Lim, 2013). Therefore, we can only hope to find tensor decomposition
in special cases. Luckily, this is usually possible when the rank of the
tensor is much lower than the size of its modes which is true for many of
the applications. Later in Sections 3.4–3.7, we will introduce algorithms
for low rank tensor decomposition. When the rank of the tensor is high,
especially when the rank is larger than the dimensions (which cannot
happen for matrices), we may need more complicated techniques which
we discuss in Section 7.

424 Tensor Decomposition Algorithms

3.2 Tensor Preliminaries and Notations

In this section we describe some preliminary tensor concepts and provide
formal tensor notations.

A real-valued p-th order tensor

T ∈
p⊗
i=1

Rdi

is a member of the outer product of Euclidean spaces Rdi , i ∈ [p],
where [p] := {1, 2, . . . , p}. For convenience, we restrict to the case where
d1 = d2 = · · · = dp = d, and simply write T ∈

⊗pRd.
As is the case for vectors (where p = 1) and matrices (where p = 2),

we may identify a p-th order tensor with the p-way array of real numbers
[Ti1,i2,...,ip : i1, i2, . . . , ip ∈ [d]], where Ti1,i2,...,ip is the (i1, i2, . . . , ip)-th
entry of T with respect to a canonical basis. A tensor is also called
symmetric if the entry values are left unchanged by the permutation of
any indices. For convenience, we provide the concepts and results only
for third order tensors (p = 3) in the rest of this section. These can be
similarly extended to higher order tensors.

Tensor modes, fibers and slices: The different dimensions of the
tensor are referred to as modes. For instance, for a matrix, the first
mode refers to columns and the second mode refers to rows. In addition,
fibers are higher order analogues of matrix rows and columns. A fiber
is obtained by fixing all but one of the indices of the tensor and is
arranged as a column vector. For instance, for a matrix, its mode-1
fiber is any matrix column while a mode-2 fiber is any row. For a third
order tensor T ∈ Rd×d×d, the mode-1 fiber is given by T (:, j, l), mode-2
by T (i, :, l) and mode-3 by T (i, j, :) for fixed indices i, j, l. Similarly,
slices are obtained by fixing all but two of the indices of the tensor and
are represented as matrices. For example, for the third order tensor
T ∈ Rd×d×d, the slices along 3rd mode are given by T (:, :, l). See
Figure 3.2 for a graphical representation of tensor fibers and slices for a
third order tensor.

3.2. Tensor Preliminaries and Notations 425

Figure 3.2: Graphical representations of tensor fibers (left) and tensor slices (right)
for a third order tensor.

Tensor matricization: Transforming tensors into matrices is one of the
ways to work with tensors. For r ∈ {1, 2, 3}, the mode-r matricization
of a third order tensor T ∈ Rd×d×d, denoted by mat(T, r) ∈ Rd×d2 ,
consists of all mode-r fibers arranged as column vectors. For instance,
the matricized version along first mode denoted byM ∈ Rd×d2 is defined
such that

T (i, j, l) = M(i, l + (j − 1)d), i, j, l ∈ [d]. (3.2)

Multilinear transformation: We view a tensor T ∈ Rd×d×d as a multi-
linear form. Consider matricesA,B,C ∈ Rd×k. Then tensor T (A,B,C) ∈
Rk×k×k is defined such that

T (A,B,C)j1,j2,j3 :=
∑

i1,i2,i3∈[d]
Ti1,i2,i3 ·A(i1, j1) ·B(i2, j2) · C(i3, j3).

(3.3)

See Figure 3.3 for a graphical representation of multilinear form. In
particular, for vectors u, v, w ∈ Rd, we have

T (I, v, w) =
∑
j,l∈[d]

vjwlT (:, j, l) ∈ Rd, (3.4)

which is a multilinear combination of the tensor mode-1 fibers. Similarly
T (u, v, w) ∈ R is a multilinear combination of the tensor entries, and
T (I, I, w) ∈ Rd×d is a linear combination of the tensor slices. These
multilinear forms can be similarly generalized to higher order tensors.

In the matrix case ofM ∈ Rd×d, all above multilinear forms simplify

426 Tensor Decomposition Algorithms

Figure 3.3: Tensor as a multilinear transformation and representation of Tucker
decomposition of a 3rd order tensor T =

∑
j1,j2,j3∈[k] Sj1,j2,j3 · aj1 ⊗ bj2 ⊗ cj3 =

S(A>, B>, C>)

to familiar matrix-matrix and matrix-vector products such that

M(A,B) := A>MB ∈ Rk×k,

M(I, v) := Mv =
∑
j∈[d]

vjM(:, j) ∈ Rd.

Rank-1 tensor: A 3rd order tensor T ∈ Rd×d×d is said to be rank-1 if
it can be written in the form

T = w · a⊗ b⊗ c⇔ T (i, j, l) = w · a(i) · b(j) · c(l), (3.5)

where notation ⊗ represents the outer product and a ∈ Rd, b ∈ Rd,
c ∈ Rd are unit vectors (without loss of generality) and w ∈ R is the
magnitude factor.

Throughout this monograph, we also use notation ·⊗3 to denote

a⊗3 := a⊗ a⊗ a,

for vector a.

Tensor CP decomposition and rank: A tensor T ∈ Rd×d×d is said to
have a CP (CANDECOMP/PARAFAC) rank k ≥ 1 if k is the minimum
number that the tensor can be written as the sum of k rank-1 tensors

T =
∑
j∈[k]

wj aj ⊗ bj ⊗ cj , wj ∈ R, aj , bj , cj ∈ Rd. (3.6)

3.2. Tensor Preliminaries and Notations 427

= + + · · ·

Figure 3.4: CP decomposition of a symmetric 3rd order tensor T =
∑

j
aj⊗aj⊗aj

See Figure 3.4 for a graphical representation of CP decomposition for a
symmetric 3rd order tensor. This decomposition is also closely related
to the multilinear form. In particular, given T in (3.6) and vectors
â, b̂, ĉ ∈ Rd, we have

T (â, b̂, ĉ) =
∑
j∈[k]

wj〈aj , â〉〈bj , b̂〉〈cj , ĉ〉.

Consider the decomposition in equation (3.6), denote matrix A :=
[a1|a2| · · · |ak] ∈ Rd×k, and similarly B and C. Without loss of generality,
we assume that the matrices have normalized columns (in `2-norm), since
we can always rescale them, and adjust the weights wj appropriately.

As we mentioned in the previous Section, the CP decomposition is
often unique, which is very crucial to many machine learning applications.
We will formally discuss that in Section 3.3.

Tensor Tucker decomposition: A tensor T ∈ Rd1×d2×d3 is said to have
a Tucker decomposition or Tucker representation when given core tensor
S ∈ Rk1×k2×k3 and factor matrices A ∈ Rd1×k1 , B ∈ Rd2×k2 , C ∈ Rd3×k3 ,
it can be written as

T =
∑

j1∈[k1]

∑
j2∈[k2]

∑
j3∈[k3]

Sj1,j2,j3 · aj1 ⊗ bj2 ⊗ cj3 . (3.7)

See Figure 3.3 for a graphical representation of Tucker representation.
Note that this is directly related to the multilinear from defined in (3.3)
such that the R.H.S. of above equation is S(A>, B>, C>). Note that
the CP decomposition is a special case of the Tucker decomposition
when the core tensor S is square (all modes having the same dimension)
and diagonal. Unlike CP decomposition, Tucker decomposition suffers
the same ambiguity problem as matrix decomposition. Therefore, we
will focus on CP decomposition in this monograph. On the other hand,

428 Tensor Decomposition Algorithms

Tucker decomposition can be computed efficiently, which makes it a
better choice for some applications other than learning latent variable
models.

Norms: For vector v ∈ Rd,

‖v‖ :=
√∑
i∈[d]

v2
i

denotes the Euclidean (`2) norm, and for matrixM ∈ Rd×d, the spectral
(operator) norm is

‖M‖ := sup
‖u‖=‖v‖=1

|M(u, v)|,

where | · | denotes the absolute value operator.
Furthermore, ‖T‖ and ‖T‖F denote the spectral (operator) norm

and the Frobenius norm of a tensor, respectively. In particular, for a
3rd order tensor T ∈ Rd×d×d, we have:

‖T‖ := sup
‖u‖=‖v‖=‖w‖=1

|T (u, v, w)|,

‖T‖F :=
√ ∑
i,j,l∈[d]

T 2
i,j,l.

We conclude this section by reviewing some additional matrix nota-
tions and operators that we need throughout this monograph.

Matrix notations: For a matrix M with linearly independent rows,
the right pseudo-inverse denoted byM † (such thatMM † = I) is defined
as

M † = M>(MM>)−1. (3.8)
For matrices A ∈ Rd1×k, B ∈ Rd2×k, we introduce the following

products. The Khatri-Rao product, also known as column-wise Kronecker
product C := A�B ∈ Rd1d2×k is defined such that

C(l + (i− 1)d, j) = A(i, j) ·B(l, j), i ∈ [d1], l ∈ [d2], j ∈ [k]. (3.9)

Furthermore, when d1 = d2 = d, the Hadamard product C := A ∗B ∈
Rd×k is defined as entry-wise product such that

C(i, j) = A(i, j) ·B(i, j), i ∈ [d], j ∈ [k]. (3.10)

3.3. Uniqueness of CP decomposition 429

3.3 Uniqueness of CP decomposition

When we are talking about the uniqueness of tensor CP decomposition,
there are still some inherent uncertainties even in the formulation of
the CP decomposition. For the following decomposition

T =
∑
j∈[k]

wj aj ⊗ bj ⊗ cj , wj ∈ R, aj , bj , cj ∈ Rd,

we can obviously permute different rank-1 components, and the result
will be the same tensor. We can also scale vectors aj , bj , cj and the
weight wj simultaneously, as long as the product of all the scalings is
equal to 1 and again the result will be the same tensor. The permutation
and scaling ambiguities are inherent, and can often be addressed by the
particular application. In the test scores example that we have revisited
throughout this work, the permutation ambiguity means we get the
two rank-1 components, but we do not know which one corresponds
to the quantitative and which one corresponds to the verbal factor.
In this case, intuitively we know a math test should require more
quantitative skill, while a writing test should require more verbal skill.
Therefore it should not be hard for a human to give names to the two
hidden components. The scaling ambiguity is very similar to measuring
quantities using different units, and we can often choose the appropriate
scaling, e.g., by enforcing the strengths of students to be within 0-100.
Regardless of the scaling/units we choose, the comparison between
different students/subjects still makes sense – we can still safely answer
questions like which student has the best quantitative strength.

Apart from above inherent ambiguities, there are several sufficient
conditions for uniqueness of tensor decomposition. The most well-known
condition is formulated by Kruskal (1976) and Kruskal (1977). We first
provide the definition of Kruskal rank and then state this uniqueness
condition.

Definition 3.1 (Kruskal rank). The Kruskal rank or krank of a matrix A
denoted by krank(A) is the maximum number r such that every subset
of r columns of A is linearly independent.

Theorem 3.1 ((Kruskal, 1976; Kruskal, 1977)). The CP decomposition
in (3.6) is unique (up to permutation and scaling), if we let A :=

430 Tensor Decomposition Algorithms

[a1 a2 . . . ak] (similarly for B,C, all with the same number of column
k) satisfy the condition

krank(A) + krank(B) + krank(C) ≥ 2k + 2.

This is a mild condition when the rank of the tensor is not too
high. As a comparison, matrix decomposition can be unique only when
the matrix is rank 1, or we require strong conditions like orthogonality
among components. In general, for non-degenerate cases when the
components are in general position (with probability 1 for any continuous
probability distribution on the components A,B,C), the krank of the
matrices A,B,C are equal to min{k, d} (Kruskal, 1976, see a more
robust version in Bhaskara et al., 2014). Therefore, when 2 ≤ k ≤ d,
the Kruskal condition is always satisfied leading to unique tensor CP
decomposition. Even when k > d (rank is higher than the dimension),
the Kruskal condition can be satisfied as long as k ≤ 1.5d− 1.

3.4 Orthogonal Tensor Decomposition

Tensor decomposition is in general a challenging problem. As a special
and more tractable kind of decomposition, we introduce orthogonal
tensor decomposition in this section. We review some useful properties
of tensors that have orthogonal decomposition, and in the next section,
we show how these properties lead to tensor power iteration as a natural
algorithm for orthogonal tensor decomposition. It is worth mentioning
here that not all tensors have orthogonal decomposition, and as we
discussed in the previous section, the tensor decomposition can still be
unique even when the tensor rank-1 components are not orthogonal.

We first review the spectral decomposition of symmetric matrices,
and then discuss a generalization to higher-order tensors.

3.4.1 Review: Matrix Decomposition

We first build intuition by reviewing the matrix setting, where the
desired decomposition is the eigen-decomposition of a symmetric rank-k
matrix M = V ΛV >, where V = [v1|v2| · · · |vk] ∈ Rd×k is the ma-
trix with orthonormal (V >V = I) eigenvectors as columns, and Λ =

3.4. Orthogonal Tensor Decomposition 431

diag(λ1, λ2, . . . , λk) ∈ Rk×k is diagonal matrix of non-zero eigenvalues.
In other words,

M =
k∑
j=1

λj vjv
>
j =

k∑
j=1

λj v
⊗2
j . (3.11)

Such a decomposition is guaranteed to exist for every symmetric matrix;
see Golub and Van Loan, 1990, Chapter 8.

Recovery of the vj ’s and λj ’s can be viewed in at least two ways:
fixed point and variational characterizations.

Fixed-point characterization

First, each vi is a fixed point under the mapping u 7→ Mu, up to a
scaling factor λi:

Mvi =
k∑
j=1

λj(v>j vi)vj = λivi

as v>j vi = 0 for all j 6= i by orthogonality. The vi’s are not necessarily the
only such fixed points. For instance, with the multiplicity λ1 = λ2 = λ,
then any linear combination of v1 and v2 is also fixed underM . However,
in this case, the decomposition in (3.11) is not unique, as λ1v1v

>
1 +λ2v2v

>
2

is equal to λ(u1u
>
1 + u2u

>
2) for any pair of orthonormal vectors u1

and u2 spanning the same subspace as v1 and v2. Nevertheless, the
decomposition is unique when λ1, λ2, . . . , λk are distinct, whereupon
the vi’s are the only directions fixed under u 7→Mu up to non-trivial
scaling; see Theorem 2.2.

Variational characterization

The second view of recovery is via the variational characterization of
the eigenvalues. Assume λ1 > λ2 > · · · > λk; the case of repeated
eigenvalues again leads to similar non-uniqueness as discussed above.
Then the Rayleigh quotient

u>Mu

u>u

432 Tensor Decomposition Algorithms

is maximized over non-zero vectors by v1. Furthermore, for any s ∈ [k],
the maximizer of the Rayleigh quotient, subject to being orthogonal to
v1, v2, . . . , vs−1, is vs. Another way of obtaining this second statement
is to consider the deflated Rayleigh quotient

u>
(
M −

∑s−1
j=1 λjvjv

>
j

)
u

u>u
,

and observe that vs is the maximizer. Also see that this statement
is closely related to the optimization view-point of SVD provided in
Definition 2.4.

Efficient algorithms for finding these matrix decompositions are well
studied (Golub and Loan, 1996, Section 8.2.3), and iterative power
methods are one effective class of algorithms.

We remark that in our multilinear tensor notation, we may write
the maps u 7→Mu and u 7→ u>Mu/‖u‖22 as

u 7→Mu ≡ u 7→M(I, u), (3.12)

u 7→ u>Mu

u>u
≡ u 7→ M(u, u)

u>u
. (3.13)

3.4.2 The Tensor Case

Decomposing general tensors is a delicate issue; tensors may not even
have unique decomposition. But as we discussed earlier, tensors with
orthogonal decomposition have a structure which permits a unique
decomposition under a mild non-degeneracy condition.

An orthogonal decomposition of a symmetric tensor T ∈ Rd×d×d is
a collection of orthonormal (unit) vectors {v1, v2, . . . , vk} together with
corresponding positive scalars λj > 0 such that

T =
k∑
j=1

λjv
⊗3
j . (3.14)

In general, we say a p-th order symmetric tensor has an orthogonal
decomposition if there exists a collection of orthonormal (unit) vectors
{v1, v2, . . . , vk} together with corresponding scalars λj such that

3.4. Orthogonal Tensor Decomposition 433

T =
k∑
j=1

λjv
⊗p
j .

Note that for odd order tensors (especially p = 3), we can add the
requirement that the λj be positive. This convention can be followed
without loss of generality since −λjv⊗pj = λj(−vj)⊗p whenever p is
odd. Also, it should be noted that orthogonal decompositions do not
necessarily exist for every symmetric tensor.

In analogy to the matrix setting, we consider two ways to view
this decomposition: a fixed-point characterization and a variational
characterization. Related characterizations based on optimal rank-1
approximations are given by Zhang and Golub (2001).

Fixed-point characterization

For a tensor T , consider the vector-valued map

u 7→ T (I, u, u) (3.15)

which is the third-order generalization of (3.12).
From the definition of multilinear form in (3.4), this can be explicitly

written as
T (I, u, u) =

∑
i∈[d]

∑
j,l∈[d]

Ti,j,l(e>j u)(e>l u)ei,

where ei denotes the d-dimensional basis vector with i-th entry equal
to 1 and the rest of entries being zero. Observe that (3.15) is not a
linear map, which is a key difference compared to the matrix case where
Mu = M(I, u) is a linear map of u.

An eigenvector u for a matrix M satisfies M(I, u) = λu, for some
scalar λ. We say a unit vector u ∈ Rd is an eigenvector of T , with
corresponding eigenvalue λ ∈ R, if

T (I, u, u) = λu.

To simplify the discussion, we assume throughout that eigenvectors have
unit norm; otherwise, for scaling reasons, we replace the above equation
with T (I, u, u) = λ‖u‖u. This concept was originally introduced by Lim

434 Tensor Decomposition Algorithms

(2005) and Qi (2005)1. For orthogonally decomposable tensors T =∑k
j=1 λjv

⊗3
j ,

T (I, u, u) =
k∑
j=1

λj(u>vj)2vj .

By the orthogonality of the vi’s, it is clear that T (I, vi, vi) = λivi for
all i ∈ [k]. Therefore, each (vi, λi) is an eigenvector/eigenvalue pair.

There are a number of subtle differences compared to the matrix
case that arise as a result of the non-linearity of (3.15). First, even with
the multiplicity λ1 = λ2 = λ, a linear combination u := c1v1 + c2v2 is
not an eigenvector except in very special cases. In particular,

T (I, u, u) = λ1c
2
1v1 + λ2c

2
2v2 = λ(c2

1v1 + c2
2v2)

may not be a multiple of u = c1v1 +c2v2. This indicates that the issue of
repeated eigenvalues does not have the same status as in the matrix case.
Second, even if all the eigenvalues are distinct, it turns out that the vi’s
are not the only eigenvectors. For example, set u := (1/λ1)v1 +(1/λ2)v2.
Then,

T (I, u, u) = λ1(1/λ1)2v1 + λ2(1/λ2)2v2 = u,

so u/‖u‖ is an eigenvector with corresponding eigenvalue ‖u‖. More
generally, for any subset S ⊆ [k], the vector∑

j∈S

1
λj
· vj

is an eigenvector after normalization.
As we now see, these additional eigenvectors can be viewed as

spurious. We say a unit vector u is a robust eigenvector of T if there
exists an ε > 0 such that for all θ ∈ {u′ ∈ Rd : ‖u′ − u‖ ≤ ε}, repeated
iteration of the map

θ̄ 7→ T (I, θ̄, θ̄)
‖T (I, θ̄, θ̄)‖

, (3.16)

starting from θ converges to u. Note that the map (3.16) re-scales the
output to have unit Euclidean norm. Robust eigenvectors are also called
attracting fixed points of (3.16); see, e.g., Kolda and Mayo, 2011.

1Note that there are many definitions of tensor eigenvalues and eigenvectors,
see for example Qi, 2005. The definition we used here is called Z-eigenvalues/Z-
eigenvectors in Qi, 2005.

3.4. Orthogonal Tensor Decomposition 435

The following theorem implies that if T has an orthogonal decom-
position as given in (3.14), then the set of robust eigenvectors of T are
precisely the set {v1, v2, . . . vk}, implying that the orthogonal decompo-
sition is unique. For even order tensors, the uniqueness is true up to
sign-flips of the vi’s.

Theorem 3.2 (Uniqueness of orthogonal tensor decomposition). Let T
have an orthogonal decomposition as given in (3.14). Then,

1. The set of θ ∈ Rd which do not converge to some vi under repeated
iteration of (3.16) has measure zero.

2. The set of robust eigenvectors of T is equal to {v1, v2, . . . , vk}.

See Anandkumar et al. (2014a) for the proof of the theorem which
follows readily from simple orthogonality considerations. Note that
every vi in the orthogonal tensor decomposition is robust, whereas for a
symmetric matrix M , for almost all initial points, the map θ̄ 7→ Mθ̄

‖Mθ̄‖
converges only to an eigenvector corresponding to the largest magnitude
eigenvalue. Also, since the tensor order is odd, the signs of the robust
eigenvectors are fixed, as each −vi is mapped to vi under (3.16).

Variational characterization

We now discuss a variational characterization of the orthogonal decom-
position. The generalized Rayleigh quotient (Zhang and Golub, 2001)
for a third-order tensor is given by

u 7→ T (u, u, u)
(u>u)3/2 ,

which can be compared to (3.13). For an orthogonally decomposable
tensor, the following theorem shows that a non-zero vector u ∈ Rd is an
isolated local maximizer (Nocedal and Wright, 1999) of the generalized
Rayleigh quotient if and only if u = vi for some i ∈ [k].

Theorem 3.3. Assume d ≥ 2. Let T have an orthogonal decomposition
as given in (3.14), and consider the optimization problem

max
u∈Rd

T (u, u, u) s.t. ‖u‖ = 1.

436 Tensor Decomposition Algorithms

1. The stationary points are eigenvectors of T .

2. A stationary point u is an isolated local maximizer if and only if
u = vi for some i ∈ [k].

See Ge et al. (2015a)[Section C.1] for the proof of the theorem. It is
similar to local optimality analysis for ICA methods using fourth-order
cumulants (Delfosse and Loubaton, 1995; Frieze et al., 1996).

Again, we see similar distinctions to the matrix case. In the matrix
case, the only local maximizers of the Rayleigh quotient are the eigen-
vectors with the largest eigenvalue (and these maximizers take on the
globally optimal value). For the case of orthogonal tensor forms, the
robust eigenvectors are precisely the isolated local maximizers.

An important implication of the two characterizations is that, for
orthogonally decomposable tensors T =

∑
j∈[k] λjv

⊗3
j , (i) the local

maximizers of the objective function T (u, u, u)/(u>u)3/2 correspond
precisely to the vectors vj in the decomposition, and (ii) these local
maximizers can be reliably identified using a simple fixed-point iteration
as in (3.16), i.e., the tensor analogue of the matrix power method.
Moreover, a second-derivative test based on T (I, I, u) can be employed
to test for local optimality and rule out other stationary points.

3.4.3 Beyond Orthogonal Tensor Decomposition

So far, we have considered tensors with orthogonal decomposition as
in (3.14). We now discuss how the problem of non-orthogonal tensor de-
composition can be reduced to the orthogonal tensor decomposition, and
therefore, we can use the orthogonal tensor decomposition algorithms
to recover the rank-1 components.

As we alluded in Section 2.4, we can pre-process the tensor using a
whitening procedure, which is described in more detail in Procedure 2.
This procedure orthogonalizes the components of the input tensor. After
recovering the rank-1 components of the orthogonal decomposition, we
apply un-whitening procedure proposed in Procedure 3 to recover the
rank-1 components of the original non-orthogonal tensor decomposition.
The whitening procedure only works when the components of the
original non-orthogonal tensor are linearly independent. Luckily for

3.4. Orthogonal Tensor Decomposition 437

Procedure 2 Whitening
input Tensor T =

∑
j∈[k] λj · a⊗3

j ∈ Rd×d×d; matrix M =
∑
j∈[k] λ̃j ·

a⊗2
j ∈ Rd×d. Assume aj ’s are linearly independent.

output Lower dimensional tensor with orthogonal rank-1 components
1: Compute the rank-k SVD, M = U Diag(γ)U>, where U ∈ Rd×k

and γ ∈ Rk.
2: Compute the whitening matrix W := U Diag(γ−1/2) ∈ Rd×k.
3: return T (W,W,W) ∈ Rk×k×k.

many machine learning applications (such as topic models, mixtures of
high dimensional Gaussians) that we will talk about in Section 4, it is
natural to expect the true components to be linearly independent.

We first elaborate on the whitening step, and analyze how the
proposed Procedure 2 works and orthogonalizes the components of
input tensor. We then analyze the inversion of whitening operator
showing how the components in the whitened space are translated back
to the original space as stated in Procedure 3.

Whitening procedure

Consider the non-orthogonal rank-k tensor

T =
∑
j∈[k]

λj · a⊗3
j , (3.17)

where the goal of whitening procedure is to reduce it to an orthogonal
tensor form. To do this, we exploit a matrix M which has the same
rank-1 components as T such that

M =
∑
j∈[k]

λ̃j · a⊗2
j . (3.18)

In case we do not have such matrix, we can generate it as random
combination of slices of T such that M := T (I, I, θ) ∈ Rd×d, where
θ ∼ N (0, Id) is a random standard Gaussian vector. It is also worth
mentioning that although we refer to the rank-k SVD of matrix M as
U Diag(γ)U>, it might be the case that matrix M is not positive semi-
definite and does not necessarily have such symmetric SVD. In that case,

438 Tensor Decomposition Algorithms

U Diag(γ)U> is basically the eigen-decomposition of symmetric matrix
M where the entries of vector γ can be also negative. We can modify
the whitening matrix as W := U Diag(|γ|−1/2), where | · | denotes the
entry-wise absolute value, and the rest of analysis in this section would
go through with minor modifications. So, in the rest of this section, we
assume the entries of γ are all positive.

Another complication is that given the tensor T in (3.17) and M
in (3.18), it is still impossible to uniquely determine ‖aj‖, λ̃j and λj .
Indeed, if we scale the j-th component to C · aj using a constant C 6= 0,
one just needs to scale λ̃j by a factor of 1/C2 and λj by a factor of
1/C3 and both the tensor T and matrix M are preserved. We discuss
this ambiguity in more details in Remark 3.1.

Let matrix W ∈ Rd×k denote the whitening matrix, i.e., the whiten-
ing matrix W in Procedure 2 is constructed such that W>MW = Ik.
Applying whitening matrix W to the tensor T =

∑
j∈[k] λj · a⊗3

j , we
have

T (W,W,W) =
∑
j∈[k]

λj
(
W>aj

)⊗3

=
∑
j∈[k]

λj

λ̃
3/2
j

(
W>aj

√
λ̃j

)⊗3

=
∑
j∈[k]

µj · v⊗3
j , (3.19)

where we defined

µj := λj

λ̃
3/2
j

, vj := W>aj

√
λ̃j , j ∈ [k], (3.20)

in the last equality. Let V := [v1|v2| · · · |vk] ∈ Rk×k denote the factor
matrix for T (W,W,W). Then, we have

V := W>ADiag(λ̃1/2), (3.21)

and thus,

V V > = W>ADiag(λ̃)A>W = W>MW = Ik.

Since V is a square matrix, it is also concluded that V >V = Ik, and
therefore, tensor T (W,W,W) is whitened such that its rank-1 compo-

3.4. Orthogonal Tensor Decomposition 439

Procedure 3 Un-whitening
input Orthogonal rank-1 components vj ∈ Rk, j ∈ [k].
output Rank-1 components of the original non-orthogonal tensor
1: Consider matrix M which was exploited for whitening in Proce-

dure 2, and let λ̃j , j ∈ [k] denote the corresponding coefficients as
M = ADiag(λ̃)A>; see (3.18). Note that we don’t know A so we
need to get λ̃j from other information, see Remark 3.1.

2: Compute the rank-k SVD, M = U Diag(γ)U>, where U ∈ Rd×k

and γ ∈ Rk.
3: Compute

aj = 1√
λ̃j
U Diag(γ1/2)vj , j ∈ [k].

4: return {aj}j∈[k].

nents vj ’s form an orthonormal basis. This discussion clarifies how the
whitening procedure works.

Inversion of the whitening procedure

Let us also analyze the inversion procedure on how to transform vj ’s to
aj ’s. The main step is stated in Procedure 3. According to whitening
Procedure 2, let M = U Diag(γ)U>, U ∈ Rd×k, γ ∈ Rk, denote the
rank-k SVD of M . Substituting whitening matrix W := U Diag(γ−1/2)
in (3.21), and multiplying U Diag(γ1/2) from left, we have

U Diag(γ1/2)V = UU>ADiag(λ̃1/2).

Since the column spans of A ∈ Rd×k and U ∈ Rd×k are the same (given
their relations to M), A is a fixed point for the projection operator on
the subspace spanned by the columns of U . This projector operator is
UU> (since columns of U form an orthonormal basis), and therefore,
UU>A = A. Applying this to the above equation, we have

A = U Diag(γ1/2)V Diag(λ̃−1/2),

440 Tensor Decomposition Algorithms

i.e.,
aj = 1√

λ̃j
U Diag(γ1/2)vj , j ∈ [k]. (3.22)

As we discussed before, in general one needs some additional infor-
mation to determine the coefficients λ̃j ’s.

Remark 3.1. [Scaling Ambiguity in Whitening Procedure] If one only
has access to tensor T in (3.17) and matrix M in (3.18), there is no way
to uniquely determine ‖aj‖, λ̃j or λj . Between these three parameters, we
already have two equations for any j ∈ [k]: 1) µj = λj/λ̃

3/2
j as in (3.20),

and 2) aj = 1√
λ̃j

U Diag(γ1/2)vj as in (3.22). Note that all other variables
such as µj , vj , γ, U can be computed from the tensor decomposition of
the whitened tensor in (3.19) and the SVD decomposition of matrix M .
Therefore, the three parameters still have one degree of freedom which
is captured by a scaling such that if (aj , λ̃j , λj) is a set of parameters
that is consistent with M and T , then for any C 6= 0, (Caj , λ̃j/C2,
λj/C

3) is also a set of parameters that is consistent with M and T .
There are many cases where one might have additional information

to determine the exact values of ‖aj‖, λ̃j or λj . For some applications
(such as topic modeling in Section 4.2.3), the components aj ’s may
have unit `1 or `2 norm, in which case we should scale aj accordingly.
For some other applications such as pure topic model in Section 4.1 or
mixture of Gaussians in Section 4.2.1, we know λj = λ̃j , and therefore,
both of them are equal to µ−2

j .
When λ̃j ’s are unknown at the time of running Procedure 3, one can

simply choose λ̃j = 1. If there is no additional information the results
will give one set of parameters that are consistent with M and T . If
additional information is available one can apply correct normalization
afterwards.

3.4.4 Beyond Symmetric Tensor Decomposition

In the previous sections, we considered symmetric tensor decompositions
as in (3.17). In some applications, the tensor we have access to might

3.4. Orthogonal Tensor Decomposition 441

be asymmetric. Consider

T =
∑
j∈[k]

λj aj ⊗ bj ⊗ cj , (3.23)

where {aj}, {bj}, {cj}’s are three groups of vectors that are linearly
independent within the group. Here, we cannot directly apply the
techniques for symmetric tensor decomposition. However, there is a
way to transform this tensor to a symmetric one if we have access to
some extra matrices. We discuss this process in this section which is
a combination of whitening approach proposed in the previous section
and the idea of CCA for matrices stated in Section 2.5. Similar to the
whitening procedure described earlier, the symmetrization step in this
section only works if the tensor components ({aj , j ∈ [k]}, {bj , j ∈ [k]},
{cj , j ∈ [k]}) are all linearly independent within their own mode. Again
for many machine learning applications that requires this procedure
(such as the Multi-view model and Noisy-Or networks in Section 4), it is
natural to assume that the components are indeed linearly independent.

We first elaborate on the symmetrization step, and discuss how the
proposed Procedure 4 works by orthogonalizing and symmetrizing the
components of the input tensor. We then analyze the inversion of this
process showing how the components in the whitened/symmetrized
space are translated back to the original space as stated in Procedure 5.

Symmetrization procedure

The whitening and symmetrization in Procedure 4 is adapted from
whitening procedure for symmetric tensors stated in Procedure 2 with
two modifications: first, the whitening is performed for an asymmetric
tensor vs. a symmetric tensor in Procedure 2, and second, an extra
step for symmetrization of the tensor is added. Similar to the whitening
procedure, there are also additional scaling issues (as in Remark 3.1)
introduced by the symmetrization procedure, we discuss that later in
Remark 3.2.

In order to transform the asymmetric tensor T in (3.23) to a sym-
metric and orthogonal tensor, we first whiten the three modes of the
tensor. Similar to the whitening argument in the previous section, let

442 Tensor Decomposition Algorithms

Procedure 4 Whitening and Symmetrization
input Tensor T =

∑
j∈[k] λj · aj ⊗ bj ⊗ cj ∈ Rd1×d2×d3

input matrix Ma =
∑
j∈[k] λ̃a,j · a⊗2

j (similarly Mb and Mc)
input matrix Ma,b =

∑
j∈[k] λ̃ab,j · aj ⊗ bj (similarly Ma,c)

{Note that only T,Ma,Mb,Mc,Ma,b,Mb,c,Ma,c are known (usu-
ally from moment estimates), we don’t observe the components
aj , bj , cj .}

output Lower dimensional symmetric tensor with orthogonal rank-1
components

1: Compute the rank-k SVD,Ma = Ua Diag(γa)U>a , where Ua ∈ Rd1×k

and γ ∈ Rk; and similarly for Mb and Mc.
2: Compute the whitening matrix Wa := Ua Diag(γ−1/2

a) ∈ Rd1×k; and
similarly Wb and Wc.

3: Compute matrices Ra,b := W>a Ma,bWb, and Ra,c := W>a Ma,cWc.
4: return T

(
Wa,WbR

>
a,b,WcR

>
a,c

)
∈ Rk×k×k.

Wa,Wb,Wc be the whitening matrices for different modes of the tensor;
see Procedure 4 for precise definitions. Following the same calculations
as in the whitening section, we have

T (Wa,Wb,Wc) =
∑
j∈[k]

µ̂j âj ⊗ b̂j ⊗ ĉj ,

where

µ̂j := λj√
λ̃a,j λ̃b,j λ̃c,j

, âj := W>a aj

√
λ̃a,j , j ∈ [k].

b̂j and ĉj are similarly defined. Same as before, we have transformed
the tensor so that each mode now has orthogonal components, but the
only difference is âj may not be the same as b̂j (or ĉj), and therefore,
the tensor is not symmetric yet. We will resolve this by using the cross
matricesMa,b,Mb,c. The idea is very similar to CCA stated in Section 2.5.
More precisely we have:

Claim 1. Let Ra,b := W>a Ma,bWb, then we have

Ra,b =
∑
j∈[k]

µ̃j · âj b̂>j ,

3.4. Orthogonal Tensor Decomposition 443

Procedure 5 Inversion of Whitening and Symmetrization
input Orthogonal rank-1 components âj ∈ Rk, j ∈ [k]
output Rank-1 components of the original non-orthogonal and asym-

metric tensor
1: For all j ∈ [k], compute

aj = 1√
λ̃a,j

Ua Diag(γ1/2
a)âj ,

bj =

√
λ̃a,j

λ̃ab,j
Ub Diag(γ1/2

b)R>a,bâj ,

cj =

√
λ̃a,j

λ̃ac,j
Uc Diag(γ1/2

c)R>a,câj ,

where the variables are the same as in Procedure 4.
2: return {(aj , bj , cj)}j∈[k].

where µ̃j := λ̃ab,j√
λ̃a,j λ̃b,j

. In particular, Ra,bb̂j = µ̃j âj .

The claim follows from similar calculation as above for T (Wa,Wb,Wc).
Define Ra,c := W>a Ma,cWc, we can then use these matrices to transform
between the vectors âj , b̂j and ĉj . More precisely

T (Wa,WbR
>
a,b,WcR

>
a,c) =

∑
j∈[k]

λj(W>a aj)⊗ (Ra,bW>b bj)⊗ (Ra,cW>c cj)

=
∑
j∈[k]

µ̂j · âj ⊗ (Ra,bb̂j)⊗ (Ra,cĉj)

=
∑
j∈[k]

µj · â⊗3
j ,

where µj := λj λ̃ab,j λ̃ac,j

λ̃
3/2
a,j λ̃b,j λ̃c,j

. We have now transformed the tensor to a

symmetric and orthogonal tensor whose components are {âj}’s, and
techniques for symmetric orthogonal tensors can be applied to do the
decomposition.

444 Tensor Decomposition Algorithms

Inversion of the symmetrization procedure

The inversion steps are provided in Procedure 5. The analysis of the
algorithm and why it works is very similar to the inversion of whitening
discussed in the previous section. This technique is particularly useful for
multi-view models that we will discuss in Section 4.3. As we mentioned
before, there are also uncertainties about the scaling in the case of
symmetrization:
Remark 3.2. [Scaling Ambiguity in Whitening and Symmetrization
Procedure] If one only has access to tensor T , matrices Ma, Mb, Mc,
Ma,b, Mb,c, Ma,c, there is no way to uniquely determine the 10 parame-
ters (‖aj‖, ‖bj‖, ‖cj‖, λ̃a,j , λ̃b,j , λ̃c,j , λ̃ab,j , λ̃bc,j , λ̃ac,j , λj). The 7 known
quantities T , Ma, Mb, Mc, Ma,b, Mb,c, Ma,c give 7 equations over these
10 parameters. The additional degrees of freedom can be described
as (Ca‖aj‖, Cb‖bj‖, Cc‖cj‖, λ̃a,j/C2

a , λ̃b,j/C2
b , λ̃c,j/C2

c , λ̃ab,j/(CaCb),
λ̃bc,j/(CbCc), λ̃ac,j/(CaCc), λj/(CaCbCc)), where Ca, Cb, Cc are arbi-
trary nonzero constants.

As before, there are special cases where the scaling of aj , bj , cj is
known, which leads to three additional equations to uniquely determine
all the scalings. There are also special cases where all the coefficients
are the same, in which case they are all going to be equal to µ̂−2

j .
When λ̃a,j ’s (and similarly, λ̃ab,j ’s and λ̃ac,j ’s) are unknown at the

time of running Procedure 5, one can simply choose all of them to be
equal to 1. If there is no additional information the results will give
one set of parameters that are consistent with all the observed matrices
and tensors. If additional information is available one can apply correct
normalization afterwards.

3.5 Tensor Power Iteration

In the previous section, we discussed that the robust fixed-points of the
tensor power iteration in (3.16)

θ̄ 7→ T (I, θ̄, θ̄)
‖T (I, θ̄, θ̄)‖

,

correspond to the rank-1 components of orthogonal tensor decomposition
in (3.14); see Theorem 3.2. Therefore, the power iteration is a natural

3.5. Tensor Power Iteration 445

and useful algorithm to recover the rank-1 components of an orthogonal
tensor decomposition (Lathauwer et al., 2000, Remark 3). We first
state a simple convergence analysis for an orthogonally decomposable
tensor T , and then discuss the analysis for approximately orthogonally
decomposable tensors.

When only an approximation T̂ to an orthogonally decomposable
tensor T is available (e.g., when empirical moments are used to estimate
population moments), an orthogonal decomposition need not exist
for this perturbed tensor (unlike the case for matrices), and a more
robust approach is required to extract the approximate decomposition.
Here, we propose such a variant in Algorithm 6 and provide a detailed
perturbation analysis.

3.5.1 Convergence analysis for orthogonally decomposable tensors

The following lemma establishes the quadratic convergence of the tensor
power method, i.e., repeated iteration of (3.16), for extracting a single
component of the orthogonal decomposition. Note that the initial vector
θ0 determines which robust eigenvector will be the convergent point.
Computation of subsequent eigenvectors can be computed with deflation,
i.e., by subtracting appropriate terms from T .

Lemma 1. [Tensor power iteration for orthogonally decomposable ten-
sors] Let T ∈ Rd×d×d have an orthogonal decomposition as given
in (3.14). For a vector θ0 ∈ Rd, suppose that the set of numbers
|λ1v

>
1 θ0|, |λ2v

>
2 θ0|, . . . , |λkv>k θ0| has a unique largest element; without

loss of generality, say |λ1v
>
1 θ0| is this largest value and |λ2v

>
2 θ0| is the

second largest value. For t = 1, 2, . . . , let

θt := T (I, θt−1, θt−1)
‖T (I, θt−1, θt−1)‖ .

Then

‖v1 − θt‖2 ≤
(

2λ2
1

k∑
i=2

λ−2
i

)
·
∣∣∣∣λ2v

>
2 θ0

λ1v>1 θ0

∣∣∣∣2
t+1

.

That is, repeated iteration of (3.16) starting from θ0 converges to v1 at
a quadratic rate.

446 Tensor Decomposition Algorithms

To obtain all eigenvectors, we may simply proceed iteratively using
deflation, executing the power method on T −

∑
j∈[s] λjv

⊗3
j after having

obtained robust eigenvector/eigenvalue pairs {(vj , λj), j ∈ [s]}.

Proof. Let θ0, θ1, θ2, . . . be the sequence given by

θ0 := θ0, θt := T (I, θt−1, θt−1), t ≥ 1.

Let ci := v>i θ0 for all i ∈ [k]. It is easy to check that

1. θt = θt/‖θt‖,

2. θt =
∑k
i=1 λ

2t−1
i c2t

i vi.

Indeed,

θt+1 =
k∑
i=1

λi(v>i θt)2vi =
k∑
i=1

λi(λ2t−1
i c2t

i)2vi =
k∑
i=1

λ2t+1−1
i c2t+1

i vi.

Then

1− (v>1 θt)2 = 1− (v>1 θt)2

‖θt‖2
= 1− λ2t+1−2

1 c2t+1
1∑k

i=1 λ
2t+1−2
i c2t+1

i

≤
∑k
i=2 λ

2t+1−2
i c2t+1

i∑k
i=1 λ

2t+1−2
i c2t+1

i

≤ λ2
1

k∑
i=2

λ−2
i ·

∣∣∣∣λ2c2
λ1c1

∣∣∣∣2
t+1

.

Since λ1 > 0, we have v>1 θt > 0 and hence,

‖v1 − θt‖2 = 2(1− v>1 θt) ≤ 2(1− (v>1 θt)2),

as required. �

3.5.2 Perturbation analysis of a robust tensor power method

Now we consider the case where we have an approximation T̂ to an
orthogonally decomposable tensor T . Here, a more robust approach is
required to extract an approximate decomposition. Anandkumar et al.,
2014a gave such an algorithm (Algorithm 6), and provided a detailed

3.5. Tensor Power Iteration 447

Algorithm 6 Robust Tensor Power Method
input symmetric tensor T̃ ∈ Rk×k×k, number of iterations L, N .
output the estimated eigenvector/eigenvalue pair; the deflated tensor.
1: for τ = 1 to L do
2: Draw θ

(τ)
0 uniformly at random from the unit sphere in Rk.

3: for t = 1 to N do
4: Compute power iteration update

θ
(τ)
t :=

T̃ (I, θ(τ)
t−1, θ

(τ)
t−1)

‖T̃ (I, θ(τ)
t−1, θ

(τ)
t−1)‖

(3.24)

5: end for
6: end for
7: Let τ∗ := arg maxτ∈[L]{T̃ (θ(τ)

N , θ
(τ)
N , θ

(τ)
N)}.

8: Do N power iteration updates (3.24) starting from θ
(τ∗)
N to obtain

θ̂, and set λ̂ := T̃ (θ̂, θ̂, θ̂).
9: return the estimated eigenvector/eigenvalue pair (θ̂, λ̂); the de-

flated tensor T̃ − λ̂ θ̂⊗3.

perturbation analysis. We summarize the perturbation result here and
give a generalization later in Section 3.5.3. For simplicity, we assume
the tensor T̂ is of size k × k × k as per the reduction from Section 3.4.3
where whitening procedure has been applied to the original tensor. In
some applications, it may be preferable to work directly with a d×d×d
tensor of rank k ≤ d (as in Lemma 1); these results apply in that setting
with little modification.

Assume that the symmetric tensor T ∈ Rk×k×k is orthogonally
decomposable, and that T̂ = T+E, where the perturbation E ∈ Rk×k×k

is a symmetric tensor with small operator norm:

‖E‖ := sup
‖θ‖=1

|E(θ, θ, θ)|.

In our applications that we will describe in Section 4, T̂ is the tensor
formed by using empirical moments, while T is the orthogonally de-
composable tensor derived from the population moments for the given
model.

448 Tensor Decomposition Algorithms

The following theorem is similar to Wedin’s perturbation theorem
for singular vectors of matrices (Wedin, 1972) in that it bounds the
error of the (approximate) decomposition returned by Algorithm 6 on
input T̂ in terms of the size of the perturbation, provided that the
perturbation is small enough.

Theorem 3.4 (Anandkumar et al., 2014a). Let T̂ = T + E ∈ Rk×k×k,
where T is a symmetric tensor with orthogonal decomposition T =∑k
i=1 λiv

⊗3
i where each λi > 0, {v1, v2, . . . , vk} is an orthonormal basis,

and E is a symmetric tensor with operator norm ‖E‖ ≤ ε. Define
λmin := min{λi : i ∈ [k]}, and λmax := max{λi : i ∈ [k]}. There exists
universal constants C1, C2, C3 > 0 such that the following holds. Pick
any η ∈ (0, 1), and suppose

ε ≤ C1 ·
λmin
k

, N ≥ C2 ·
(

log(k) + log log
(λmax

ε

))
,

and√
ln(L/ log2(k/η))

ln(k) ·
(

1− ln(ln(L/ log2(k/η))) + C3
4 ln(L/ log2(k/η)) −

√
ln(8)

ln(L/ log2(k/η))

)

≥ 1.02
(

1 +
√

ln(4)
ln(k)

)
.

(Note that the condition on L holds with L = poly(k) log(1/η).) Sup-
pose that Algorithm 6 is iteratively called k times, where the in-
put tensor is T̂ in the first call, and in each subsequent call, the in-
put tensor is the deflated tensor returned by the previous call. Let
(v̂1, λ̂1), (v̂2, λ̂2), . . . , (v̂k, λ̂k) be the sequence of estimated eigenvec-
tor/eigenvalue pairs returned in these k calls. With probability at
least 1− η, there exists a permutation π on [k] such that

‖vπ(j) − v̂j‖ ≤ 8ε/λπ(j), |λπ(j) − λ̂j | ≤ 5ε, ∀j ∈ [k],

and ∥∥∥∥T − k∑
j=1

λ̂j v̂
⊗3
j

∥∥∥∥ ≤ 55ε.

3.5. Tensor Power Iteration 449

One important difference from Wedin’s theorem is that this is an
algorithm dependent perturbation analysis, specific to Algorithm 6
(since the perturbed tensor need not have an orthogonal decomposition).
Furthermore, note that Algorithm 6 uses multiple restarts to ensure
(approximate) convergence—the intuition is that by restarting at multi-
ple points, we eventually start at a point in which the initial contraction
towards some eigenvector dominates the error E in our tensor. The
proof shows that we find such a point with high probability within
L = poly(k) trials. It should be noted that for large k, the required
bound on L is very close to linear in k.

A final consideration is that for specific applications, it may be
possible to use domain knowledge to choose better initialization points.
For instance, in the topic modeling applications (cf. Section 4.1), the
eigenvectors are related to the topic word distributions, and many
documents may be primarily composed of words from just single topic.
Therefore, good initialization points can be derived from these single-
topic documents themselves, as these points would already be close to
one of the eigenvectors.

3.5.3 Perturbation analysis of tensor power method with whitening

A limitation of Theorem 3.4 is that it only applies to orthogonal de-
compositions, while in most applications one would need to first apply
the whitening transformation in Procedure 2 described in Section 3.4.3.
With matrix perturbation bounds, it is possible to analyze the robust-
ness of the combined procedure of whitening and orthogonal tensor
decomposition. Variants of such analysis has appeared before in several
papers, such as Anandkumar et al., 2013; Janzamin et al., 2014, however
they are specialized to the specific setting. In this subsection we will
give guarantees for such a combined procedure in the general setting.

Theorem 3.5. Suppose the true matrix M and tensor T have the forms

M =
k∑
i=1

λ̃iaia
>
i , T =

k∑
i=1

λia
⊗3
i ,

where {a1, a2, . . . , ak} is not necessarily a set of orthogonal components.

450 Tensor Decomposition Algorithms

Assume our algorithm only has access to noisy/perturbed versions

M̂ = M + EM , T̂ = T + ET , where ‖EM‖ ≤ εM , ‖ET ‖ ≤ εT .

Let σmin(M) be the smallest nonzero singular value ofM . Suppose εM ≤
σmin(M)/4, let Λmin := min{λiλ̃−3/2

i : i ∈ [k]}, Λmax := max{λiλ̃−3/2
i :

i ∈ [k]}, then there exists a universal constant C such that

εTW
:= C

(
εT

σmin(M)3/2 + Λmax
εM

σmin(M)

)
.

If εTW
(as ε), Λmax (as λmax), Λmin (as λmin), N , L, η satisfies the con-

ditions in Theorem 3.4, then Algorithm 6 combined with whitening/un-
whitening Procedures 2 and 3 finds pairs (â1, Λ̂1), (â2, Λ̂2), ..., (âk, Λ̂k),
such that with probability η there exists a permutation π on [k] such
that for all j ∈ [k],

‖
√
λ̃π(j)aπ(j) − âj‖ ≤

9λ̃3/2
π(j)‖M‖

1/2

λπ(j)
εTW

,

|λπ(j)λ̃
−3/2
π(j) − Λ̂j | ≤ 5εTW

.

Note that as we discussed earlier in Remark 3.1, without additional
assumptions it is impossible to determine the scaling of ai together
with λi and λ̃i. The two quantities that we give perturbation bounds on
(λπ(j)λ̃

−3/2
π(j) and

√
λ̃π(j)aπ(j)) are the two quantities that are not effected

by the scaling issue. In the special case when λi = λ̃i, the pair (âj , Λ̂j)
that we estimate allows us to estimate aπ(j) ≈ Λ̂j âj and λπ(j) ≈ Λ̂−2

j .
From Theorem 3.5, it is also clear that the error comes from both

the whitening process (ΛmaxεM/σmin(M)) and the estimation error in
estimating the tensor (εT /σmin(M)3/2). If the second order moment
estimate M is not accurate enough, using this algorithm can suffer
additional error. Empirically, it is often observed that alternating least
squares (see Section 3.7) may perform better than using orthogonal
tensor decomposition with whitening. However, we do want to emphasize
that alternating least squares does not have the same provable guarantee
as Theorem 3.5.

To prove Theorem 3.5, we first need to analyze the perturbation
of the whitening matrix. We use Weyl’s Theorem and Davis-Kahan

3.5. Tensor Power Iteration 451

Theorem to do that. We state special cases of these two theorems for
the setting that we are interested in. For more general forms of these
theorems and other matrix perturbation inequalities, see stewart and
Sun, 1990.

Theorem 3.6 (Weyl’s Theorem (Weyl, 1912)). Let M ∈ Rd×d be a
symmetric matrix, and E ∈ Rd×d be a symmetric perturbation with
‖E‖ ≤ ε. Let λi(M) be the i-th eigenvalue of M . We have

|λi(M)− λi(M + E)| ≤ ε, i ∈ [d].

Theorem 3.7 (Davis-Kahan Theorem (Davis and Kahan, 1970)). Let
M ∈ Rd×d and M̂ = M + E ∈ Rd×d be symmetric PSD matrices with
‖E‖ ≤ ε. Suppose M is rank k and its truncated SVD is M = UDU>,
where U ∈ Rd×k and D ∈ Rk×k. The truncated (top-k) SVD of M̂ is
ÛD̂Û>. Let U⊥ ∈ Rd×(d−k) be the orthogonal subspace of U (that is,
UU> + (U⊥)(U⊥)> = Id). Then, we have

‖(U⊥)>Û‖ ≤ ‖E‖/λk(M̂),

where λk(M̂) denotes the k-th eigenvalue of M̂ .

Using these two theorems, we will prove the following guarantees
for the whitening procedure.

Lemma 3.8. Suppose M ∈ Rd×d is a symmetric PSD matrix with
rank k and σmin(M) denotes its smallest (nonzero) singular value. Let
M̂ = M + E is also a symmetric matrix and ε := ‖E‖ ≤ σmin(M)/4.
Let the truncated (top-k) SVD of M and M̂ be UDU> and ÛD̂Û>,
respectively. Then, there exists an orthonormal matrix R ∈ Rk×k such
that if we define W := UD−1/2R, Ŵ := ÛD̂−1/2, B := UD1/2R,
B̂ = ÛD̂1/2, these matrices satisfy

‖W − Ŵ‖ ≤ 5ε
σmin(M)3/2 ,

‖B>(W − Ŵ)‖ ≤ 3ε
σmin(M) ,

‖B − B̂‖ ≤ 3ε
√
‖M‖

σmin(M) .

452 Tensor Decomposition Algorithms

Proof. We first show that U and Û span similar subspace. Let U⊥ be
the orthonormal subspace of U (as in Theorem 3.7). By Weyl’s Theorem
(Theorem 3.6), we know

λk(M̂) ≥ σmin(M)− ‖E‖ ≥ 3σmin(M)/4. (3.25)

Therefore, by Davis Kahan Theorem (Theorem 3.7) we have

‖(U⊥)>Û‖ ≤ 4ε/3σmin(M). (3.26)

Now for W − Ŵ , we have

‖W − Ŵ‖ = ‖(UU> + (U⊥)(U⊥)>)(W − Ŵ)‖
≤ ‖U>(W − Ŵ)‖+ ‖(U⊥)>(W − Ŵ)‖. (3.27)

No matter what R is, the second term can be bounded as

‖(U⊥)>(W − Ŵ)‖ = ‖(U⊥)>ÛD̂−1/2‖

≤ λk(M̂)−1/2‖(U⊥)>Û‖

≤ 2ε
σmin(M)3/2 , (3.28)

where we used (3.25) and (3.26) in the last inequality2. Therefore, we
only need to show that there exists an R such that the first term
‖U>(W − Ŵ)‖ is small.

Let M̄ = ÛD̂Û>, by Eckart-Young Theorem (Theorem 2.3), we
know ‖M̄ − M̂‖ ≤ ‖E‖ = ε, and thus, ‖M̄ − M‖ ≤ 2ε. Now for
Ŵ>(M̄ −M)Ŵ , we have

‖Ŵ>(M̄ −M)Ŵ‖ ≤ 2ε
σk(M̂)

,

where we also used the fact that ‖Ŵ‖ = σk(M̂)−1/2. Given Ŵ>M̄Ŵ =
Ik, the above inequality can be rewritten as

‖I − Ŵ>MŴ‖ ≤ 2ε
σk(M̂)

≤ 3ε
σmin(M) .

2Note that the exact constant in the last inequality is (4
3)3/2, and we replace it

by 2 for simplicity. We will do similar relaxations to constants several times more
later in the proof.

3.5. Tensor Power Iteration 453

Let P := U>Ŵ , then Ŵ>MŴ = P>DP . Since 3ε/σmin(M) ≤
3/4 < 1, by Weyl’s Theorem we know the eigenvalues of P>DP are
between 1± 3ε/σmin(M) ∈ [1/4, 7/4]. There exists a diagonal matrix ∆
(with ‖∆− I‖ ≤ 3ε/σmin(M)) and an orthonormal matirx R1 such that

P>DP = R1∆R>1 .

In other words, letR2 = D1/2PR1∆−1/2 (equivalently, P = D−1/2R2∆1/2R>1),
we have R>2 R2 = ∆−1/2R>1 (P>DP)R1D

−1/2 = I, so R2 is also orthonor-
mal.

Now we can choose R = R2R
>
1 , and therefore, the first term in (3.27)

can be bounded as

‖U>(W − Ŵ)‖ = ‖D−1/2R− P‖

= ‖D−1/2R2R
>
1 −D−1/2R2∆1/2R>1 ‖

= ‖D−1/2R2(I −∆1/2)R>1 ‖
≤ ‖D−1/2‖‖I −∆1/2‖

≤ 3ε
σmin(M)3/2 .

The last step uses the fact that |I − ∆1/2‖ ≤ ‖I − ∆‖ for diagonal
matrix ∆, which just follows from |1−

√
x| ≤ |1− x| for every x ≥ 0.

Combining this bound with (3.27) and (3.28), we prove the first desired
inequality as

‖W − Ŵ‖ ≤ 5ε
σmin(M)3/2 .

With the choice of R, the second inequality is easier to prove:

‖B>(W − Ŵ)‖ = ‖D1/2U>(W − Ŵ)‖
= ‖R−D1/2P‖

= ‖R2R
>
1 −R2∆1/2R>1 ‖

≤ ‖I −∆1/2‖

≤ 3ε
σmin(M) .

To prove the third equation, we observe that B = MW and B̂ =

454 Tensor Decomposition Algorithms

M̄Ŵ . Therefore,

‖B − B̂‖ = ‖MW − M̄Ŵ‖
≤ ‖M(W − Ŵ)‖+ ‖(M − M̄)Ŵ‖.

Here, the second term is bounded as

‖(M − M̄)Ŵ‖ ≤ ‖M − M̄‖‖Ŵ‖ ≤ 3ε
σmin(M)1/2 ,

where in the second inequality we used (3.25), the fact that ‖M−M̄‖ ≤
2ε and an upper bound on the constant term. For the first term, it can
be bounded as

‖M(W − Ŵ)‖ = ‖UD1/2R− UDP‖

= ‖UD1/2(R−D1/2P)‖
≤ ‖UD1/2‖‖R−D1/2P‖

≤ 3ε
√
‖M‖

σmin(M) .

Note that the bound for ‖R−D1/2P‖ is the same as the second inequality.
�

Finally, we are ready to prove Theorem 3.5.

Proof of Theorem 3.5. We first construct the whitening matrices W
and Ŵ , and un-whitening matrices B and B̂ for the exact matrix M
and observed matrix M̂ as described in Lemma 3.8. The ideal tensor that
we want to perform orthogonal tensor decomposition is T (W,W,W),
however we only have access to T̂ (Ŵ , Ŵ , Ŵ). Therefore the main part
of the proof is to bound the difference between these two tensors.

Let vi =
√
λ̃iW

>ai. As we argued in Section 3.4.3, vi’s are orthonor-
mal vectors and we have (see (3.19) and (3.20))

T (W,W,W) =
k∑
i=1

Λiv⊗3
i ,

where we defined Λi := λiλ̃
−3/2
i . Since T (W,W,W) is an orthogonal

tensor, its spectral norm is equal to Λmax. Let TW := T (W,W,W),

3.5. Tensor Power Iteration 455

T̂W := T̂ (Ŵ , Ŵ , Ŵ), and Q := B>(Ŵ −W), then we have

T̂W − TW = TW (I +Q, I +Q, I +Q)− TW + ET (Ŵ , Ŵ , Ŵ)
= TW (Q, I, I) + TW (I,Q, I) + TW (I, I,Q)

+ TW (Q,Q, I) + TW (Q, I,Q) + TW (I,Q,Q)
+ TW (Q,Q,Q) + ET (Ŵ , Ŵ , Ŵ).

By the second inequality of Lemma 3.8, we know ‖Q‖ ≤ 3εM/σmin(M) <
1. Thus, the first 7 terms of above equation all have spectral norm
bounded by ‖TW ‖‖Q‖ ≤ 3ΛmaxεM/σmin(M).

The last term ET (Ŵ , Ŵ , Ŵ) has norm bounded by ‖ET ‖‖Ŵ‖3.
From (3.25), we know ‖Ŵ‖ ≤ 2σmin(M)−1/2. Combining these bounds,
we can say that for a large enough constant C, we have

‖T̂W − TW ‖ ≤ εTW
:= C

(
εT

σmin(M)3/2 + Λmax
εM

σmin(M)

)
.

By Theorem 3.4, Algorithm 6 will return a set of pairs {(v̂j , Λ̂j) : j ∈
[k]}, where with probability at least 1− η, there exists a permutation π
on [k] such that

‖vπ(j) − v̂j‖ ≤ 8εTW
/Λπ(j), |Λπ(j) − Λ̂j | ≤ 5εTW

, j ∈ [k].

The final outputs of the algorithm are âj = B̂v̂j and Λ̂j , for j ∈ [k].
The estimation guarantees of the eigenvalues Λj ’s are already concluded
above. We only need to analyze the perturbation of the unwhitening
procedure for âj ’s.

Note that
√
λ̃iai = Bvi. Therefore, to compare

√
λ̃π(j)aπ(j) with âj ,

we only need to compare Bvπ(j) with B̂v̂j .

‖
√
λ̃π(j)aπ(j) − âj‖ = ‖Bvπ(j) − B̂v̂j‖

≤ ‖B(vπ(j) − v̂j)‖+ ‖(B − B̂)v̂j‖
≤ ‖B‖‖(vπ(j) − v̂j)‖+ ‖B − B̂‖

≤ 8εTW

√
‖M‖/Λπ(j) + 3εM

√
‖M‖/σmin(M)

≤ 9εTW

√
‖M‖/Λπ(j),

456 Tensor Decomposition Algorithms

Algorithm 7 Simultaneous Diagonalization for Tensor Decomposition
input tensor T =

∑
j∈[k] λj aj ⊗ bj ⊗ cj ∈ Rd1×d2×d3

output rank-1 components of tensor T
1: Pick two random vectors x, y ∼ N (0, Id3).
2: Compute matrices

Mx := T (I, I, x) ∈ Rd1×d2 , My := T (I, I, y) ∈ Rd1×d2 ;

see (3.3) for the definition of the multilinear form.
3: Let

• {(α̂j , âj)}’s be the eigenvalues & eigenvectors of MxM
†
y .

• {(β̂j , b̂j)}’s be the eigenvalues & eigenvectors of M>y (M †x)>.

Here ·† denotes the pseudo-inverse matrix; see Definition 2.6.
4: For any j ∈ [k], pair (âj , b̂j) if the corresponding eigenvalues satisfy
α̂j β̂j = 1.

5: Fixing (âj , b̂j), j ∈ [k], solve the linear system T =
∑k
j=1 âj⊗ b̂j⊗ ĉj

in terms of variables ĉj ’s.
6: Set λ̂j = ‖ĉj‖ and ĉj = ĉj/‖ĉj‖.
7: return {(λ̂j ; âj , b̂j , ĉj) : j ∈ [k]}

where we used the fact that ‖v̂j‖ = 1 in the second inequality. ‖B − B̂‖
is bounded by the result of Lemma 3.8. The final step is true be-
cause εTW

≥ CΛmaxεM/σmin(M), and therefore, 3εM
√
‖M‖/σmin(M) ≤

εTW

√
‖M‖/Λπ(j) for all j as long as C ≥ 3. �

3.6 Simultaneous Diagonalization

In this section, we describe simultaneous diagonalization algorithm
which is one of the first algorithms with provable guarantees for tensor
decomposition. It was discovered in Harshman (1970) (and credited to
Dr. Robert Jenrich), with generalizations in Leurgans et al. (1993). Si-
multaneous diagonalization method for tensor decomposition is provided
in Algorithm 7.

Comparing to the power method, simultaneous diagonalization is

3.6. Simultaneous Diagonalization 457

much easier to analyze, does not require the whitening procedure and
can work even when the third dimension d3 is smaller than k. However,
the straightforward implementation of simultaneous diagonalization
is not very robust to perturbations. We give the guarantees for the
simultaneous diagonalization algorithm in the noiseless setting as follows.

Theorem 3.9. [Simultaneous Diagonalization Guarantees in Noiseless
Setting] Suppose tensor T has a rank-k decomposition

T =
∑
j∈[k]

λj aj ⊗ bj ⊗ cj ∈ Rd1×d2×d3 . (3.29)

In addition, suppose vectors {aj}’s and {bj}’s are both linearly inde-
pendent, and vectors {cj}’s have Kruskal rank at least 2, i.e., no two
ci and cj for i 6= j are on the same line or parallel; see Definition 3.1
for the definition of Kruskal rank. Then, with probability 1 (over the
randomness of vectors x and y in the algorithm), Algorithm 7 returns a
group of 4-tuples (λ̂j ; âj , b̂j , ĉj) such that

T =
∑
j∈[k]

λ̂j âj ⊗ b̂j ⊗ ĉj .

Furthermore, (λ̂j ; âj , b̂j , ĉj) is equivalent to (λj ; aj , bj , cj) up to permu-
tation and scaling.

In the rest of this section, we illustrate the ideas in different steps
of the algorithm which clarifies how it decomposes rank-k tensor T
in (3.29), and also provides an informal proof for the above theorem.

First, we describe the structure and properties of matrices Mx,My

(see Step 2 of the algorithm), which also clarifies why this algorithm
is called simultaneous diagonalization. Following the above tensor de-
composition structure for tensor T , and given the multilinear form as a
linear combination of tensor slices through weight vectors x and y, we
have

Mx =
∑
j∈[k]

λj〈x, cj〉ajb>j = ADxB
>,

My =
∑
j∈[k]

λj〈y, cj〉ajb>j = ADyB
>.

458 Tensor Decomposition Algorithms

Here A ∈ Rd1×k, B ∈ Rd2×k are matrices whose columns are {aj}’s and
{bj}’s, respectively. We also define Dx ∈ Rk×k as a diagonal matrix
whose (j, j)-the entry denoted by dx,j is equal to λj〈x, cj〉, and similarly,
Dy ∈ Rk×k as a diagonal matrix whose (j, j)-the entry denoted by
dy,j is equal to λj〈y, cj〉. These equations are called diagonalizations
of Mx,My, and they share the same matrices A,B. That is why this
algorithm is called simultaneous diagonalization.

With the above forms of Mx and My, we can compute the two
matrices used in Step 3 as

MxM
†
y = ADxD

−1
y A†,

M>y (M †x)> = BDyD
−1
x B†.

Given this, for any aj in (3.29), we have

MxM
†
yaj = ADxD

−1
y A†aj = ADxD

−1
y e

(k)
j = dx,jd

−1
y,jaj .

Here in the second equality, we used the fact that A†A = Ik (with Ik
denoting the k-dimensional identity matrix), and hence, A†aj = e

(k)
j ,

where e(k)
j denotes the j-th basis vector in the k-dimensional space, i.e,

the j-th column of Ik. Similarly for any bj in (3.29), we have

M>y (M †x)>bj = d−1
x,jdy,jbj .

Therefore, by the definition of matrix eigenvectors, {aj}’s and {bj}’s
are exactly the eigenvectors of the two matrices, and the corresponding
eigenvalues αj := dx,jd

−1
y,j and βj := d−1

x,jdy,j satisfy

αjβj = 1, j ∈ [k].

Thus, as long as the values αj ’s (and inherently βj ’s) are unique for
j ∈ [k], Steps 3 and 4 of Algorithm 7 correctly find the set of {(aj , bj)}’s
up to permutation. The values of αj ’s (and inherently βj ’s) rely on the
randomness of vectors x and y, and when {cj}’s have Kruskal rank at
least two, the values are distinct with probability 1.

Finally in Step 5, the algorithm recovers the components of the last
mode of the tensor by fixing {aj}’s, {bj}’s, and solving a system of
linear equations in terms of {cj}’s. Note that the same idea appears in
Alternating Least Squares algorithm that we will discuss in the next

3.7. Alternating Least Squares 459

section with more details on how to efficiently solve such a system of
linear equations. When {aj}’s and {bj}’s are linearly independent, this
step will have a unique solution. Hence, the algorithm finds the unique
decomposition of tensor T .

Note that simultaneous diagonalization algorithm corresponds to
a special tight case of Kruskal’s condition in Theorem 3.1, where
krank(A) = k, krank(B) = k, krank(C) ≥ 2. Weakening the assump-
tion on any of the matrices A, B or C may make the tensor decom-
position non-unique. Compared to tensor power method (with the
symmetrization procedure in Section 3.4.4), the simultaneous diagonal-
ization method does not need access to second moment matrices, and
can allow one of the factors to have krank 2.

3.7 Alternating Least Squares

One of the most popular algorithms for tensor decomposition is Alter-
nating Least Squares (ALS) method, which has been described as the
“workhorse” of tensor decomposition (Kolda and Bader, 2009). This
involves solving the least squares problem on a mode of the tensor,
while keeping the other modes fixed, and alternating between the tensor
modes. This becomes clearer as we describe the details of ALS as follows.

Given rank-k tensor

T =
∑
j∈[k]

λj aj ⊗ bj ⊗ cj ∈ Rd1×d2×d3 ,

the goal is to recover tensor rank-1 components aj ∈ Rd1 , bj ∈ Rd2 , cj ∈
Rd3 , and coefficients λj ∈ R, for j ∈ [k]. As before, we assume the
rank-1 components have unit norm. The problem can be formulated as
the least squares optimization

(λj ; aj , bj , cj)j∈[k] := arg min
λ̃j ,ãj ,b̃j ,c̃j

∥∥∥T − ∑
j∈[k]

λ̃j ãj ⊗ b̃j ⊗ c̃j
∥∥∥
F
, (3.30)

s.t. λ̃j ∈ R, ãj ∈ Rd1 , b̃j ∈ Rd2 , c̃j ∈ Rd3 ,

where the error between tensor T and its rank-k estimation is minimized
in the sense of Frobenius norm. This is a multilinear optimization
program and a non-convex optimization problem.

460 Tensor Decomposition Algorithms

Alternating Least Squares method provides an approach to overcome
the non-convexity challenge. This mainly involves modifying the opti-
mization problem such that the optimization is performed for only one
of the components while all other components are assumed to be fixed.
The same step is performed by alternating among different components
(modes). Thus, the problem in (3.30) is solved through an alternating
least squares approach.

We now describe the main step of ALS by fixing the second and
third mode rank-1 components, i.e., matrices B̃ := [b̃1|b̃2| · · · |b̃k] and
C̃ := [c̃1|c̃2| · · · |c̃k], and optimizing over first mode, i.e., matrix Ã :=
[ã1|ã2| · · · |ãk]. As the first step, since the Frobenius norm in (3.30) is
an entry-wise tensor norm, we can reshape the tensor inside without
chainging the norm. More specifically, we can rewrite the optimization
problem in (3.30) into the following equivalent form:

min
Ã∈Rd1×k

∥∥mat(T, 1)− Ã · diag(λ̃) · (B̃ � C̃)>
∥∥
F
, (3.31)

where mat(T, 1) denotes the mode-1 matricization of T , and � denotes
the Khatri-Rao product; see (3.2) and (3.9), respectively. Note that
here we assume B̃, C̃, and λ̃ are fixed. We also used the following
matricization property such that for vectors u, v, w, we have

mat(u⊗ v ⊗ w, 1) = u · (v � w)>.

The optimization problem in (3.31) is now a linear least squares
problem, and the analysis is very similar to linear regression with the
additional property that matrix (B̃ � C̃)> is highly-structured which is
crucial for the computational efficiency of ALS as we see below. The
(right) pseudo-inverse of (B̃ � C̃)> is (see (3.8) for the definition)[

(B̃ � C̃)>
]†

= (B̃ � C̃) ·
[
(B̃ � C̃)>(B̃ � C̃)

]−1
.

Computing the inverse matrix could be the computationally-expensive
part of the iterations, but the specific Khatri-Rao structure of the matrix
enables us to write it as

(B̃ � C̃)>(B̃ � C̃) = B̃>B̃ ∗ C̃>C̃,

where ∗ denotes the Hadamard (entry-wise) product. Thus, we only
need to compute the inverse of k×k matrix B̃>B̃ ∗ C̃>C̃, and when k is

3.7. Alternating Least Squares 461

Algorithm 8 Alternating Least Squares for Tensor Decomposition
input tensor T =

∑
j∈[k] λj aj ⊗ bj ⊗ cj ∈ Rd1×d2×d3

output rank-1 components of tensor T
1: Set initial estimates for Ã ∈ Rd1×k, B̃ ∈ Rd2×k, C̃ ∈ Rd3×k.
2: while converged do
3: Let A = mat(T, 1) · (B̃ � C̃) ·

(
B̃>B̃ ∗ C̃>C̃

)−1
, and set

λ̃j = ‖Aj‖, Ãj = Aj/λ̃j , j ∈ [k].

4: Let B = mat(T, 2) · (Ã� C̃) ·
(
Ã>Ã ∗ C̃>C̃

)−1
, and set

λ̃j = ‖Bj‖, B̃j = Bj/λ̃j , j ∈ [k].

5: Let C = mat(T, 3) · (Ã� B̃) ·
(
Ã>Ã ∗ B̃>B̃

)−1
, and set

λ̃j = ‖Cj‖, C̃j = Cj/λ̃j , j ∈ [k].

6: end while
7: return (λ̃; Ã, B̃, C̃) as the estimation of tensor decomposition

components.

small (compared to dt, t ∈ {1, 2, 3}), the inverse can be computed much
faster. In practice we can also compute the Hadamard product and then
solve a linear system of equations rather than explicitly computing the
inverse.

Finally, using the above property and imposing the unit norm
constraint on the columns of Ã, we update the rank-1 components of
the first mode as

Ã 7→ Norm
(

mat(T, 1) · (B̃ � C̃) ·
(
B̃>B̃ ∗ C̃>C̃

)−1
)
, (3.32)

where operator Norm(·) normalizes the columns of input matrix, i.e.,
for vector v, we have Norm(v) := v/‖v‖.

By alternating between different modes of the tensor and with similar

462 Tensor Decomposition Algorithms

calculations, we update the second and third modes as

B̃ 7→ Norm
(

mat(T, 2) · (Ã� C̃) ·
(
Ã>Ã ∗ C̃>C̃

)−1
)
,

C̃ 7→ Norm
(

mat(T, 3) · (Ã� B̃) ·
(
Ã>Ã ∗ B̃>B̃

)−1
)
.

For the coefficient vector λ, we update it appropriately such that the
rank-1 components have unit norm. We have summarized the ALS steps
in Algorithm 8.

ALS vs. power iteration: The ALS updates in the rank-1 form are
strongly related to the power iteration updates. Recall tensor power
iteration in (3.16) which can be adapted to the asymmetric setting such
that the update corresponding to the first component is (ignoring the
normalization)

ã 7→ T (I, b̃, c̃).

The update in the right hand side can be also rewritten as

T (I, b̃, c̃) = mat(T, 1) · (b̃� c̃) ∝ mat(T, 1) ·
(
(b̃� c̃)>

)†
,

which is basically the rank-1 form of ALS updates that we described in
this section. In rank-k ALS, all components are simultaneously updated
at each iteration, while the rank-1 version only updates one component
at a time which is basically the ALS update that we described in this
section, but only for one of the components. The process then needs
to be repeated for each remaining component on the deflated tensor;
see Algorithm 6. By contrast, in the ALS algorithm we introduced
here, all components are simultaneously updated at each iteration. Also
note that if the tensor does not have an orthogonal decomposition,
ALS can still work while tensor power iteration requires additional
whitening step (as in Section 3.4.3) even if the components are linearly
independent. However, the benefit of tensor power iteration is that we
do have guarantees for it (see Section 3.5.1, while ALS is not known
to converge from a random starting point even if the tensor has an
orthogonal decomposition.

3.7. Alternating Least Squares 463

Regularized ALS: Since ALS involves solving linear least squares
problems, we can also propose the regularized version of ALS. It is
derived by adding a regularization term to the optimization in (3.31).
The most popular form of regularization is the `2-regularization which
adds a term α‖Ã‖2F to the optimization problem, where α ≥ 0 is the
regularization parameter. This leads to the ALS updates being changed
as

Ã 7→ Norm
(

mat(T, 1) · (B̃ � C̃) ·
(
B̃>B̃ ∗ C̃>C̃ + αI

)−1
)

; (3.33)

and similarity the updates for B̃ and C̃ are changed. This is specifically
helpful when the non-regularized pseudo-inverse matrix is not well-
behaved. We can obviously add other forms of regularization terms to
the optimization problem which lead to variants of regularized ALS.

ALS for symmetric tensors: The ALS algorithm is naturally proposed
for asymmetric tensor decomposition, where at each iteration only one
component is updated while all other components are fixed. The next
natural question is whether ALS can be adapted to the decomposition
of symmetric tensors such as T =

∑
j∈[k] λj a

⊗3
j . Here we have to only

estimate one matrix A. We review two heuristics to do this. Let Ãt
denote the update variable in the left hand side of (3.32) at iteration
t. The first heuristic consists in, at iteration t, substituting B̃ and C̃
in the right hand side of (3.32) by Ãt−1 and Ãt−2, respectively. The
second heuristic consists in substituting both with Ãt−1.

4
Applications of Tensor Methods

In Chapter 1, we gave a few examples of latent variable models that
can be learned by tensor decomposition techniques. In this chapter,
we elaborate on this connection and give more examples on how to
learn many probabilistic models by tensor decomposition. We cover
both unsupervised and supervised settings in this chapter. We hope
these examples provide a good understanding of how tensor methods
are applied in the existing literature and can help in generalizing tensor
decomposition techniques to learning more models. Of course, there
are still many more applications of tensor decomposition techniques to
learn probabilistic models in the literature, and we give a brief survey
in Section 4.6.

In the unsupervised setting, we discuss models including the Gaus-
sian mixtures, multiview mixture model, Independent Component Anal-
ysis (ICA), Latent Dirichlet Allocation (LDA) and Noisy-Or models.
To this end, the observed moment is formed as a low order tensor
(usually third or fourth order), and by decomposing the tensor to its
rank-1 components we are able to learn the parameters of the model;
see Sections 4.1-4.4 which describe this connection. The basic form is
demonstrated in Theorem 4.1 for the first example, and the general

464

4.1. Pure Topic Model Revisited 465

pattern will emerge from subsequent examples.
Then in Section 4.5, we show how the tensor techniques can be

adapted to supervised setting, and in particular, for learning neural
networks and mixtures of generalized linear models. Here, we exploit
the cross-moment between the output and a specific non-linear trans-
formation of the input. By decomposing that cross-moment into rank-1
components, we learn the parameters of the model.

4.1 Pure Topic Model Revisited

We start by explaining the pure topic model in more details, where it
was originally introduced in Section 1.2. Recall the model is a simple
bag-of-words model for documents in which the words in the docu-
ment are assumed to be exchangeable– a collection of random variables
x1, x2, . . . , x` are exchangeable if their joint probability distribution is
invariant to permutation of the indices. The well-known De Finetti’s
theorem (Austin, 2008) implies that such exchangeable models can be
viewed as mixture models in which there is a latent variable h such that
x1, x2, . . . , x` are conditionally i.i.d. given h (see Figure 4.1(a) for the
corresponding graphical model) and the conditional distributions are
identical at all the nodes, i.e., for all x’s.

In our simplified topic model for documents, the latent variable h is
interpreted as the (sole) topic of a given document, and it is assumed
to take only a finite number of distinct values. Let k be the number of
distinct topics in the corpus, d be the number of distinct words in the
vocabulary, and ` ≥ 3 be the number of words in each document. The
generative process for a document is as follows: the document’s topic is
drawn according to the discrete distribution specified by the probability
vector w := (w1, w2, . . . , wk) ∈ ∆k−1, where ∆k−1 := {v ∈ Rk : ∀j ∈
[k], vj ∈ [0, 1],

∑
j∈[k] vj = 1} denotes the probability simplex, i.e., the

hidden topic h is modeled as a discrete random variable h such that

Pr[h = j] = wj , j ∈ [k].

Given the topic h, the document’s ` words are drawn independently
according to the discrete distribution specified by the probability vector

466 Applications of Tensor Methods

µh ∈ ∆d−1. It will be convenient to represent the ` words in the docu-
ment by d-dimensional random vectors x1, x2, . . . , x` ∈ Rd. Specifically,
we set

xt = ei if and only if the t-th word in the document is i,
t ∈ [`], i ∈ [d],

where {e1, e2, . . . , ed} is the standard coordinate basis for Rd. This is
basically equivalent to one-hot encoding of words using standard basis
vectors in the d-dimensional space.

As we did in Section 1.2, we will consider the cross moments of these
vectors which means we will compute E[x1x

>
2] instead of E[x1x

>
1]. The

advantage of the above encoding of words and the choice of moments is
that the moments will correspond to joint probabilities over words. For
instance, observe that

E[x1 ⊗ x2] =
∑
i,j∈[d]

Pr[x1 = ei, x2 = ej] ei ⊗ ej

=
∑
i,j∈[d]

Pr[1st word = i, 2nd word = j] ei ⊗ ej ,

and thus, the (i, j)-the entry of the moment matrix E[x1 ⊗ x2] is
Pr[1st word = i, 2nd word = j]. More generally, the (i1, i2, . . . , i`)-th
entry in the tensor E[x1⊗x2⊗· · ·⊗x`] is Pr[1st word = i1, 2nd word =
i2, . . . , `-th word = i`]. This means that estimating cross moments, say,
of x1 ⊗ x2 ⊗ x3, is the same as estimating joint probabilities of the
first three words over all documents; recall that we assume that each
document has at least three words.

The second advantage of the vector encoding of words is that the
conditional expectation of xt given h = j is simply µj , the vector of
word probabilities for topic j. This can be shown as

E[xt|h = j] =
∑
i∈[d]

Pr[t-th word = i|h = j] ei

=
∑
i∈[d]

[µj]i ei = µj , j ∈ [k],

where [µj]i is the i-th entry of the vector µj . Because the words are
conditionally independent given the topic, we can use this same property

4.2. Beyond Raw Moments 467

with conditional cross moments, say, of x1 and x2:

E[x1 ⊗ x2|h = j] = E[x1|h = j]⊗ E[x2|h = j] = µj ⊗ µj , j ∈ [k].

Now using the law of total expectations, we know

E[x1 ⊗ x2] =
k∑
j=1

Pr[h = j]E[x1 ⊗ x2|h = j] =
k∑
j=1

wj µj ⊗ µj .

This and similar calculations lead to the following theorem.

Theorem 4.1 (Anandkumar et al., 2012c). For the above exchangeable
single topic model, if

M2 := E[x1 ⊗ x2],
M3 := E[x1 ⊗ x2 ⊗ x3],

then

M2 =
∑
j∈[k]

wj µj ⊗ µj ,

M3 =
∑
j∈[k]

wj µj ⊗ µj ⊗ µj .

The structure of M2 and M3 revealed in Theorem 4.1 implies that
the topic vectors µ1, µ2, . . . , µk can be estimated by computing a certain
symmetric tensor decomposition. Moreover, due to exchangeability, any
triples (resp., pairs) of words in a document—and not just the first
three (resp., two) words—can be used in forming M3 (resp., M2).

4.2 Beyond Raw Moments

In the above exchangeable single topic model, the raw (cross) moments of
the observed words directly yield the desired symmetric tensor structure.
In some other models, the raw moments do not explicitly have this
form. In this section, we show that the desired tensor structure can
be found through various manipulations of different moments for some
other latent variable models.

468 Applications of Tensor Methods

4.2.1 Spherical Gaussian mixtures

We now consider a mixture of k Gaussian distributions with spherical
covariances. We start with the simpler case where all of the covariances
are identical; this probabilistic model is closely related to the (non-
probabilistic) k-means clustering problem (MacQueen, 1967). We then
consider the case where the spherical variances may differ.

Common covariance. Let wj ∈ (0, 1) be the probability of choosing
component j ∈ [k], µ1, µ2, . . . , µk ∈ Rd be the component mean vectors,
and σ2Id ∈ Rd×d be the common covariance matrix (σ ∈ R) for the
spherical Gaussian mixtures model. Then an observation vector x in
this model is given by

x := µh + z,

where h is the discrete random variable with Pr[h = j] = wj for j ∈ [k]
(similar to the exchangeable single topic model), and z ∼ N (0, σ2Id) is
an independent multivariate Gaussian random vector in Rd with zero
mean and spherical covariance matrix σ2Id.

The Gaussian mixtures model differs from the exchangeable single
topic model in the way observations are generated. In the single topic
model, we observe multiple draws (words in a particular document)
x1, x2, . . . , x` given the same fixed h (the topic of the document). In
contrast, for the Gaussian mixtures model, every realization of x corre-
sponds to a different realization of h. The following theorem shows that
how we can get the desired tensor decomposition form by modifying
the raw moments.

Theorem 4.2 (Hsu and Kakade, 2013). Assume d ≥ k. The variance σ2

is the smallest eigenvalue of the covariance matrix E[x⊗x]−E[x]⊗E[x].
Furthermore, if

M2 := E[x⊗ x]− σ2Id,

M3 := E[x⊗ x⊗ x]

− σ2 ∑
i∈[d]

(
E[x]⊗ ei ⊗ ei + ei ⊗ E[x]⊗ ei + ei ⊗ ei ⊗ E[x]

)
,

4.2. Beyond Raw Moments 469

then,

M2 =
∑
j∈[k]

wj µj ⊗ µj ,

M3 =
∑
j∈[k]

wj µj ⊗ µj ⊗ µj .

Differing covariances. The general case is where each component may
have a different spherical covariance. An observation in this model is
again x = µh + z, but now z ∈ Rd is a random vector whose conditional
distribution given h = j for some j ∈ [k] is a multivariate Gaussian
N (0, σ2

j Id) with zero mean and spherical covariance σ2
j Id.

Theorem 4.3 (Hsu and Kakade, 2013). Assume d ≥ k. The average
variance σ̄2 :=

∑
j∈[k]wjσ

2
j is the smallest eigenvalue of the covariance

matrix E[x ⊗ x] − E[x] ⊗ E[x]. Let v be any unit norm eigenvector
corresponding to the eigenvalue σ̄2. If

M1 := E[〈v, x− E[x]〉2x],
M2 := E[x⊗ x]− σ̄2Id,

M3 := E[x⊗ x⊗ x]

−
∑
i∈[d]

(
M1 ⊗ ei ⊗ ei + ei ⊗M1 ⊗ ei + ei ⊗ ei ⊗M1

)
,

where 〈·, ·〉 denotes the inner-product operator. Then

M2 =
∑
j∈[k]

wj µj ⊗ µj ,

M3 =
∑
j∈[k]

wj µj ⊗ µj ⊗ µj .

As shown by Hsu and Kakade (2013), M1 =
∑
j∈[k]wjσ

2
jµj . Note

that for the common covariance case, where σ2
j = σ2, we have that

M1 = σ2E[x]; see Theorem 4.2.

4.2.2 Independent component analysis (ICA)

The standard model for ICA (Comon, 1994; Cardoso and Comon,
1996; Hyvärinen and Oja, 2000; Comon and Jutten, 2010), in which

470 Applications of Tensor Methods

independent signals are linearly mixed and corrupted with Gaussian
noise before being observed, is specified as follows. Let h ∈ Rk be a latent
random vector with independent coordinates, A ∈ Rd×k the mixing
matrix, and z ∈ Rd be a multivariate Gaussian random vector. The
random vectors h and z are assumed to be independent. The observed
random vector x in this model is given by

x := Ah+ z.

Let µj denote the j-th column of the mixing matrix A.

Theorem 4.4 (Comon and Jutten, 2010). Define

M4 := E[x⊗ x⊗ x⊗ x]− T,

where T ∈ Rd×d×d×d is the fourth-order tensor with

[T]i1,i2,i3,i4 := E[xi1xi2]E[xi3xi4] + E[xi1xi3]E[xi2xi4]
+ E[xi1xi4]E[xi2xi3], 1 ≤ i1, i2, i3, i4 ≤ d,

i.e., T is the fourth derivative tensor of the function v 7→ 8−1E[(v>x)2]2,
and so, M4 is the fourth cumulant tensor. Let κj := E[h4

j]− 3 for each
j ∈ [k]. Then

M4 =
∑
j∈[k]

κj µj ⊗ µj ⊗ µj ⊗ µj .

Note that κj corresponds to the excess kurtosis, a measure of non-
Gaussianity as κj = 0 if hj is a standard normal random variable. Hence,
mixing matrix A is not identifiable if h is a multivariate Gaussian.

We may derive forms similar to that of M2 and M3 in Theorem 4.1
using M4 by observing that

M4(I, I, u, v) =
∑
j∈[k]

κi(µ>j u)(µ>j v) µj ⊗ µj ,

M4(I, I, I, v) =
∑
j∈[k]

κj(µ>j v) µj ⊗ µj ⊗ µj ,

for any vectors u, v ∈ Rd.

4.2. Beyond Raw Moments 471

4.2.3 Latent Dirichlet Allocation

An increasingly popular class of latent variable models are mixed mem-
bership models, where each datum may belong to several different latent
classes simultaneously. Latent Dirichlet Allocation (LDA, Blei et al.,
2003) is one such model for the case of document modeling; here, each
document corresponds to a mixture over topics (as opposed to just a
single topic that we discussed in Section 4.1). The distribution over such
topic mixtures is a Dirichlet distribution Dir(α) with parameter vector
α ∈ Rk++ with strictly positive entries; its density function over the prob-
ability simplex ∆k−1 := {v ∈ Rk : ∀j ∈ [k], vj ∈ [0, 1],

∑
j∈[k] vj = 1} is

given by

pα(h) = Γ(α0)∏
j∈[k] Γ(αj)

∏
j∈[k]

h
αj−1
j , h ∈ ∆k−1,

where
α0 := α1 + α2 + · · ·+ αk,

and Γ(·) denotes the Gamma function.
As before, the k topics are specified by probability vectors µ1, µ2, . . . , µk ∈

∆d−1 for generating words. To generate a document, we first draw the
topic mixture h = (h1, h2, . . . , hk) ∼ Dir(α), and then conditioned on h,
we draw ` words x1, x2, . . . , x` independently from the discrete distribu-
tion specified by the probability vector

∑
j∈[k] hjµj , i.e., for each word

xt, we independently sample a topic j according to the topic proportion
vector h and then sample xt according to µj . Again, we encode a word
xt by setting xt = ei if and only if the t-th word in the document is i.

The parameter α0 (the sum of the “pseudo-counts”) characterizes
the concentration of the distribution. As α0 → 0, the distribution
degenerates to a single topic model, i.e., the limiting density has, with
probability 1, exactly one entry of h being 1 and the rest are 0. At
the other extreme, if α = (c, c, . . . , c) for some scalar c > 0, then as
α0 = ck →∞, the distribution of h becomes peaked around the uniform
vector (1/k, 1/k, . . . , 1/k), and furthermore, the distribution behaves
like a product distribution. We are typically interested in the case where
α0 is small (e.g., a constant independent of k), whereupon h typically

472 Applications of Tensor Methods

h

x1 x2 · · · x`

(a) Multi-view mixtures
model

h1 h2 · · · h`

x1 x2 x`

(b) Hidden Markov model

Figure 4.1: Examples of latent variable models

has only a few large entries. This corresponds to the setting where the
documents are mainly comprised of just a few topics.

Theorem 4.5 (Anandkumar et al., 2012a). Define

M1 := E[x1],

M2 := E[x1 ⊗ x2]− α0
α0 + 1M1 ⊗M1,

M3 := E[x1 ⊗ x2 ⊗ x3]

− α0
α0 + 2

(
E[x1 ⊗ x2 ⊗M1] + E[x1 ⊗M1 ⊗ x2] + E[M1 ⊗ x1 ⊗ x2]

)
+ 2α2

0
(α0 + 2)(α0 + 1)M1 ⊗M1 ⊗M1.

Then,

M2 =
∑
j∈[k]

αj
(α0 + 1)α0

µj ⊗ µj ,

M3 =
∑
j∈[k]

2αj
(α0 + 2)(α0 + 1)α0

µj ⊗ µj ⊗ µj .

Note that α0 needs to be known to form M2 and M3 from the raw
moments. This, however, is a much weaker assumption than assuming
that the entire distribution of h is known, i.e., knowledge of the whole
parameter vector α.

4.3 Multi-view Models

Multi-view models (also sometimes called naïve Bayes models) are a spe-
cial class of Bayesian networks in which observed variables x1, x2, . . . , x`

4.3. Multi-view Models 473

are conditionally independent given a latent variable h. This is similar
to the exchangeable single topic model, but here we do not require the
conditional distributions of the xt, t ∈ [`], to be identical. Techniques
developed for this class can be used to handle a number of widely used
models including hidden Markov models (HMMs) (Mossel and Roch,
2006; Anandkumar et al., 2012c), phylogenetic tree models (Chang,
1996; Mossel and Roch, 2006), certain tree mixtures (Anandkumar
et al., 2012b), and certain probabilistic grammar models (Hsu et al.,
2012).

As before, we let h ∈ [k] be a discrete random variable with Pr[h =
j] = wj for all j ∈ [k]. Now consider random vectors x1 ∈ Rd1 , x2 ∈
Rd2 , and x3 ∈ Rd3 which are conditionally independent given h (see
Figure 4.1(a) for the corresponding graphical model), and

E[xt|h = j] = µt,j , j ∈ [k], t ∈ {1, 2, 3},

where µt,j ∈ Rdt are the conditional means of xt given h = j. Thus, we
allow the observations x1, x2, . . . , x` to be random vectors, parameter-
ized only by their conditional means. Importantly, these conditional
distributions may be discrete, continuous, or even a mix of both.

We first note the form for the raw (cross) moments.

Proposition 4.3.1. We have

E[xt ⊗ xt′] =
∑
j∈[k]

wj µt,j ⊗ µt′,j , {t, t′} ⊂ {1, 2, 3}, t 6= t′,

E[x1 ⊗ x2 ⊗ x3] =
∑
j∈[k]

wj µ1,j ⊗ µ2,j ⊗ µ3,j .

The cross moments do not possess a symmetric tensor form when the
conditional distributions are different. We can either apply asymmetric
tensor decomposition techniques to estimate conditional mean vectors
µt,j , or symmetrize the tensors by the following trick and then apply
symmetric tensor decomposition techniques. Nevertheless, the moments
can be “symmetrized” via a simple linear transformation of x1 and x2
(roughly speaking, this relates x1 and x2 to x3); this leads to an expres-
sion from which the conditional means of x3 (i.e., µ3,1, µ3,2, . . . , µ3,k)
can be recovered. For simplicity, we assume d1 = d2 = d3 = k; the

474 Applications of Tensor Methods

general case (with dt ≥ k) is easily handled using low-rank singular
value decompositions.

Theorem 4.6 (Anandkumar et al., 2012a). Assume that {µt,1, µt,2, . . . , µt,k}
are linearly independent for each t ∈ {1, 2, 3}. Define

x̃1 := E[x3 ⊗ x2]E[x1 ⊗ x2]−1x1,

x̃2 := E[x3 ⊗ x1]E[x2 ⊗ x1]−1x2,

and

M2 := E[x̃1 ⊗ x̃2],
M3 := E[x̃1 ⊗ x̃2 ⊗ x3].

Then,

M2 =
∑
j∈[k]

wj µ3,j ⊗ µ3,j ,

M3 =
∑
j∈[k]

wj µ3,j ⊗ µ3,j ⊗ µ3,j .

We now discuss three examples mostly taken from Anandkumar
et al. (2012c) where the above observations can be applied. The first
two concern mixtures of product distributions, and the last one is the
time-homogeneous hidden Markov model.

4.3.1 Mixtures of axis-aligned Gaussians and other product distri-
butions

The first example is a mixture of k product distributions in Rd un-
der a mild incoherence assumption (Anandkumar et al., 2012c). Here,
we allow each of the k component distributions to have a different
product distribution (e.g., Gaussian distribution with an axis-aligned
covariance matrix), but require the matrix of component means A :=
[µ1|µ2| · · · |µk] ∈ Rd×k to satisfy a certain (very mild) incoherence con-
dition. The role of the incoherence condition is explained below.

For a mixture of product distributions, any partitioning of the
dimensions [d] into three groups creates three (possibly asymmetric)

4.3. Multi-view Models 475

“views” which are conditionally independent once the mixture component
is selected. However, recall that Theorem 4.6 requires that for each
view, the k conditional means be linearly independent. In general, this
may not be achievable; consider, for instance, the case µi = ei for each
i ∈ [k]. Such cases, where the component means are very aligned with
the coordinate basis, are precluded by the incoherence condition.

Let ΠA denote the orthogonal projector operator to the range of A
and define coherence(A) := maxi∈[d]{e>i ΠAei} to be the largest diagonal
entry of this operator, and assume A has rank k. The coherence lies
between k/d and 1; it is largest when the range of A is spanned by the
coordinate axes, and it is k/d when the range is spanned by a subset of
the Hadamard basis of cardinality k. The incoherence condition requires
that for some ε, δ ∈ (0, 1), coherence(A) ≤ (ε2/6)/ ln(3k/δ). Essentially,
this condition ensures that the non-degeneracy of the component means
is not isolated in just a few of the d dimensions. Operationally, it implies
the following.

Proposition 4.3.2 (Anandkumar et al., 2012c). Assume A has rank k,
and

coherence(A) ≤ ε2/6
ln(3k/δ)

for some ε, δ ∈ (0, 1). With probability at least 1 − δ, a random par-
titioning of the dimensions [d] into three groups (for each i ∈ [d],
independently pick t ∈ {1, 2, 3} uniformly at random and put i in group
t) has the following property. For each t ∈ {1, 2, 3} and j ∈ [k], let µt,j
be the entries of µj put into group t, and let At := [µt,1|µt,2| · · · |µt,k].
Then for each t ∈ {1, 2, 3}, At has full column rank, and the k-th largest
singular value of At is at least

√
(1− ε)/3 times that of A.

Therefore, three asymmetric views can be created by randomly
partitioning the observed random vector x into x1, x2, and x3, such
that the resulting component means for each view satisfy the conditions
of Theorem 4.6.

4.3.2 Spherical Gaussian mixtures, revisited

Consider again the case of spherical Gaussian mixtures described in Sec-
tion 4.2.1. The previous analysis in Theorems 4.2 and 4.3 can be used

476 Applications of Tensor Methods

when the observation dimension d ≥ k, and the k component means are
linearly independent. We now show that when the dimension is slightly
larger, say greater than 3k, a different (and simpler) technique based on
the multi-view structure can be used to extract the relevant structure.

We again use a randomized reduction. Specifically, we create three
views by (i) applying a random rotation to x, and then (ii) partitioning
x ∈ Rd into three views x̃1, x̃2, x̃3 ∈ Rd̃ for d̃ := d/3. By the rotational
invariance of the multivariate Gaussian distribution, the distribution of
x after random rotation is still a mixture of spherical Gaussians (i.e., a
mixture of product distributions), and thus x̃1, x̃2, x̃3 are conditionally
independent given h. What remains to be checked is that, for each
view t ∈ {1, 2, 3}, the matrix of conditional means of x̃t for each view
has full column rank. This is true with probability 1 as long as the
matrix of conditional means A := [µ1|µ2| · · · |µk] ∈ Rd×k has rank k and
d ≥ 3k. To see this, observe that a random rotation in Rd followed by a
restriction to d̃ coordinates is simply a random projection from Rd to
Rd̃, and that a random projection of a linear subspace of dimension k to
Rd̃ is almost surely injective as long as d̃ ≥ k. Applying this observation
to the range of A implies the following.

Proposition 4.3.3 (Hsu and Kakade, 2013). Assume A has rank k and
that d ≥ 3k. Let R ∈ Rd×d be chosen uniformly at random among
all orthogonal d × d matrices, and set x̃ := Rx ∈ Rd and Ã := RA =
[Rµ1|Rµ2| · · · |Rµk] ∈ Rd×k. Partition [d] into three groups of sizes
d1, d2, d3 with dt ≥ k for each t ∈ {1, 2, 3}. Furthermore, for each t,
define x̃t ∈ Rdt (respectively, Ãt ∈ Rdt×k) to be the subvector of x̃
(resp., submatrix of Ã) obtained by selecting the dt entries (resp., rows)
in the t-th group. Then x̃1, x̃2, x̃3 are conditionally independent given
h; E[x̃t|h = j] = Ãtej for each j ∈ [k] and t ∈ {1, 2, 3}; and with
probability 1, the matrices Ã1, Ã2, Ã3 have full column rank.

It is possible to obtain a quantitative bound on the k-th largest
singular value of each At in terms of the k-th largest singular value of A
(analogous to Proposition 4.3.2). One avenue is to show that a random
rotation in fact causes Ã to have low coherence, after which we can
apply Proposition 4.3.2. With this approach, it is sufficient to require
n = O(k log k) (for constant ε and δ), which results in the k-th largest

4.3. Multi-view Models 477

singular value of each At being a constant fraction of the k-th largest
singular value of A. We conjecture that, in fact, n ≥ c · k for some c > 3
suffices.

4.3.3 Hidden Markov models

Our next example is the time-homogeneous Hidden Markov models
(HMM)(Baum and Petrie, 1966) for sequences of vector-valued observa-
tions x1, x2, . . . ∈ Rd. Consider a Markov chain of discrete hidden states
y1 → y2 → y3 → · · · over k possible states [k]; given a state yt at time
t, the random observation xt ∈ Rd at time t is independent of all other
observations and hidden states. See Figure 4.1(b).

Let π ∈ ∆k−1 be the initial state distribution (i.e., the distribution
of y1), and T ∈ Rk×k be the stochastic transition matrix for the hidden
state Markov chain such that for all times t,

Pr[yt+1 = i|yt = j] = Ti,j , i, j ∈ [k].

Finally, let O ∈ Rd×k be the matrix whose j-th column is the conditional
expectation of xt given yt = j: for all times t,

E[xt|yt = j] = Oej , j ∈ [k].

Proposition 4.3.4 (Anandkumar et al., 2012c). Define h := y2, where
y2 is the second hidden state in the Markov chain. Then

• x1, x2, x3 are conditionally independent given h;

• the distribution of h is given by the vector w := Tπ ∈ ∆k−1;

• for all j ∈ [k],

E[x1|h = j] = O diag(π)T> diag(w)−1ej

E[x2|h = j] = Oej

E[x3|h = j] = OTej .

Note the matrix of conditional means of xt has full column rank, for
each t ∈ {1, 2, 3}, provided that: (i) O has full column rank, (ii) T is
invertible, and (iii) π and Tπ have positive entries. Using the result of
this proposition, we can formulate the problem as a multi-view mixture
model and apply Theorem 4.6.

478 Applications of Tensor Methods

4.4 Nonlinear Model: Noisy-Or Networks

The models we stated in the previous sections are all linear for the
purpose of tensor decomposition; in particular, the observed moment
tensors T have an exact decomposition with the rank-1 components as
the desired parameters to be learned. This behavior is fairly common if
given hidden components, the conditional expectation of the observation
is a linear combination of different components, e.g., in the Latent
Dirichlet Allocation model, if the document has a mixture of topics, the
probabilities of observing different words are also linear mixtures.

In more complicated models, the observation may not be linear. In
this section, we consider the noisy-or model, which is among the first
non-linear models that can be learned by tensor decomposition.

The noisy-or model is a Bayes network with binary latent variables
h ∈ {0, 1}k, and binary observed variables x ∈ {0, 1}d. The hidden
variables are independent Bernoulli variables with parameter ρ, i.e.,
Pr[hj = 1] = ρ, j ∈ [k]. The conditional distribution Pr[x|h] is parame-
terized by a non-negative weight matrix W ∈ Rd×k. Conditioned on h,
the observations x1, . . . , xd are independent with distribution

Pr [xi = 0 | h] =
k∏
j=1

exp(−Wijhj) = exp(−〈W i, h〉), i ∈ [d], (4.1)

where W i denotes the i-th row of W . This model is often used to model
the relationship between diseases and symptoms, as in the classical
human-constructed tool for medical diagnosis called Quick Medical
Reference (QMR-DT) by Shwe et al. (1991). In this case, the latent
variables hj ’s are diseases and observed variables xi’s are symptoms.
We see that 1 − exp(−Wijhj) can be thought of as the probability
that disease hj activates symptom xi, and xi is activated if one of hj ’s
activates it. This also explains the name of the model, noisy-or.

Given (4.1) and the independence of different xi’s given h, we have

Pr[x | h] =
d∏
i=1

(
1− exp(−〈W i, h〉)

)xi
(
exp(−〈W i, h〉)

)1−xi
.

Contrasting with the linear models in the previous sections, we see that

4.4. Nonlinear Model: Noisy-Or Networks 479

under this model when a patient has multiple diseases, the expectation
of the symptoms x is not a linear combination of different components.

Point-wise Mutual Information: Since the conditional probability is
a product of d terms, it is natural to consider taking log in order to
convert it into a summation. This motivates the use of Point-wise Mutual
Information (PMI), which is a common metric for the correlations
between two events. Given events X and Y , the PMI is defined as

PMI(X,Y) := log Pr[X,Y]
Pr[X] Pr[Y] .

Intuitively, if X,Y are independent, then PMI = 0; if they are positively
correlated, then PMI > 0; if they are negatively correlated, then PMI <
0. This can be also generalized to three random variables as

PMI3(X,Y, Z) := log Pr[X,Y] Pr[Y,Z] Pr[X,Z]
Pr[X,Y, Z] Pr[X] Pr[Y] Pr[Z] .

For the noisy-or networks, we use PMI and PMI3 as the (generalized)
moments that we observe. More precisely, we define the following PMI
matrix M ∈ Rd×d and PMI tensor T ∈ Rd×d×d as

Mi1,i2 := PMI(1− xi1 , 1− xi2), i1, i2 ∈ [d].
Ti1,i2,i3 := PMI3(1− xi1 , 1− xi2 , 1− xi3), i1, i2, i3 ∈ [d].

These tabulate the correlations among all pairs and triples of symptoms;
more specifically, they incorporate indicator random variable for the
symptom being absent.

As before, we would like to have a low rank decomposition for these
observed matrix and tensor. This is almost true except for some small
perturbations as follows. For convenience, we define F,G ∈ Rd×k as

F := 1− exp(−W)
G := 1− exp(−2W).

Using these quantities we can approximately represent the PMI matrix
and tensor in low rank forms.

480 Applications of Tensor Methods

Proposition 4.1 (Proposition 2.1 in Arora et al., 2017). Let Fj , Gj ∈ Rd

denote the j-th columns of the above matrices F,G, respectively. Then
we have

M ≈ ρ
(
FF> + ρGG>

)
= ρ

k∑
j=1

FjF
>
j + ρ2

k∑
j=1

GjG
>
j

T ≈ ρ
k∑
j=1

Fj ⊗ Fj ⊗ Fj + ρ2
k∑
j=1

Gj ⊗Gj ⊗Gj .

The approximation in both equations are due to higher order terms
in the Taylor expansions and are dominated by the term with G. Recall
that ρ is the probability of any disease hj being present, and therefore,
for this application we expect ρ to be small. Hence, the terms with F
are much larger than the terms with G and we can say that applying
tensor decomposition approximately recovers columns of F . Several
ideas and many more details are required in analyzing the effect of the
perturbation G (since G is not as small as required in Theorem 3.4);
we refer interested readers to Arora et al., 2017.

4.5 Applications in Supervised Learning

In this section, we describe how tensor methods can be also used in
supervised learning applications contrasting with the unsupervised
problems that we have described so far. In particular, we focus on
neural networks to elaborate on this application of tensor methods.
This is a very interesting extension given the vast applications of neural
networks that have significantly improved predictive performance across
multiple domains such as computer vision and speech recognition with
rapidly growing influence in many other areas. Although we focus on
neural networks in this monograph, similar tensor techniques are also
applied to learning mixtures of generalized linear models in Sedghi et al.
(2016). Most of the discussions and results in the rest of this section
are borrowed from Janzamin et al. (2015).

In previous sections, we discussed the application of tensor methods
for learning latent variable models and latent representations which was
performed in an unsupervised manner. Thus, when considering super-
vised learning tasks such as training neural networks, the first natural

4.5. Applications in Supervised Learning 481

and major question that we have to answer is how to adapt these tensor
methods to supervised learning. To answer this, we incorporate a gener-
ative approach in the problem and propose non-linear transformation of
the input which is basically new features extracted from the input. We
refer to this new transformation as score function of the input. These
new extracted features enable us to formulate the problem of training
neural networks as the tensor decomposition problem. More concretely,
we show that the cross-moment between output and the score function
of the input has information about the weight parameters of the neural
network in its rank-1 components. Before providing more details, we
first elaborate more on exploiting a generative model, and in particular,
the score functions.

Generative vs. discriminative models: Generative models incorporate
a joint distribution p(x, y) over both the input x and label y. On
the other hand, discriminative models such as neural networks only
incorporate the conditional distribution p(y|x). While training neural
networks for general input x is NP-hard, does knowledge about the
input distribution p(x) make learning tractable?

Here, we assume knowledge of the input density p(x) which can
be any continuous differentiable function. While unsupervised learning
problem of estimation of density p(x) is itself a hard problem for general
models, here we investigate how p(x) can be exploited to make training
of neural networks tractable. The knowledge of p(x) is naturally available
in the experimental design framework, where the person designing the
experiments has the ability to choose the input distribution. Examples
include conducting polling, carrying out drug trials, collecting survey
information, and so on.

We utilize the knowledge about the input density p(x) (up to nor-
malization)1 to obtain certain (non-linear) transformations of the input,
given by the class of score functions. Score functions are normalized
derivatives of the input pdf; see (4.3). If the input is a vector (the
typical case), the first order score function (i.e., the first derivative) is a

1We do not require the knowledge of the normalizing constant or the partition
function, which is #P hard to compute (Wainwright and Jordan, 2008).

482 Applications of Tensor Methods

vector, the second order score is a matrix, and the higher order scores
are tensors.

4.5.1 Moment tensor structure in neural networks

We consider a neural network with one hidden layer of dimension k.
Let the output ỹ ∈ {0, 1} be the binary label, and x ∈ Rd be the
feature (input) vector; see Janzamin et al. (2015) for generalization to
higher dimensional output (multi-label and multi-class), and also the
continuous output case. We consider the label generating model

f̃(x) := E[ỹ|x] = 〈a2, σ(A>1 x+ b1)〉+ b2, (4.2)

where σ(·) is a (linear/nonlinear) element-wise function named as acti-
vation function; see Figure 4.2 for a schematic representation of label-
function in (4.2) in the general case of vector output ỹ.

In this section, we only focus on the realizable setting. In this setting,
the goal is to learn the parameters of the neural network specified
in (4.2), i.e., to learn the weight matrices (vectors) A1 ∈ Rd×k, a2 ∈ Rk

and bias vectors b1 ∈ Rk, b2 ∈ R, given labeled data samples {(xi, ỹi)}.
This only involves the estimation analysis where we have a label-function
f̃(x) specified in (4.2) with fixed unknown parameters A1, b1, a2, b2, and
we would like to learn these parameters and finally bound the overall
function estimation error Ex[|f̃(x)−f̂(x)|2], where f̂(x) is the estimation
of fixed neural network f̃(x) given finite samples. The approximation2

analysis and consequently the risk bound is out of the focus of this
monograph and the interested reader is referred to read Janzamin et al.
(2015) for details.

We are now ready to explain how learning the parameters of two-
layer neural network in Figure 4.2 can be characterized as a tensor
decomposition algorithm. Note that we only provide the tensor decom-
position algorithm for learning the parameters of first layer and as
described in Janzamin et al. (2015), the bias parameter in first layer is
learned using a Fourier method and the parameters of second layer are
learned using linear regression. These parts are not within the focus of

2Here by approximation we mean how accurate the neural network can approxi-
mate any arbitrary function f(x).

4.5. Applications in Supervised Learning 483

σ(·) σ(·) σ(·)σ(·)

x1 x2 x3 xdx

E[ỹ|x]

A2

A1

· · ·

· · ·

· · ·

· · ·

Figure 4.2: Graphical representation of a neural network, E[ỹ|x] = A>2 σ(A>1 x +
b1) + b2.

this monograph and we refer the reader to Janzamin et al. (2015) for
more details. Note that most of the unknown parameters (compare the
dimensions of matrix A1, vectors a2, b1, and scalar b2) are estimated in
the first part, and thus, the tensor decomposition method for estimating
A1 is the main part of the learning algorithm.

In order to provide the tensor structure, we first define the score
functions as follows.

Score function

The m-th order score function Sm(x) ∈
⊗mRd is defined as (Janzamin

et al., 2014)

Sm(x) := (−1)m∇
(m)
x p(x)
p(x) , (4.3)

where p(x) is the probability density function of random vector x ∈ Rd,
and ∇(m)

x denotes the m-th order derivative operator defined as follows.
For function g(x) : Rd → R with vector input x ∈ Rd, the m-th order
derivative w.r.t. variable x is denoted by ∇(m)

x g(x) ∈
⊗mRd (which is

a m-th order tensor) such that[
∇(m)
x g(x)

]
i1,...,im

:= ∂g(x)
∂xi1∂xi2 · · · ∂xim

, i1, . . . , im ∈ [d]. (4.4)

When it is clear from the context, we drop the subscript x and write
the derivative as ∇(m)g(x).

484 Applications of Tensor Methods

The main property of score functions as yielding differential op-
erators that enables us to estimate the weight matrix A1 via tensor
decomposition is discussed in next subsection; see Equation (4.5).

Note that in this framework, we assume access to a sufficiently
good approximation of the input pdf p(x) and the corresponding score
functions S2(x), S3(x). Indeed, estimating these quantities in general
is a hard problem, but there exist numerous instances where this be-
comes tractable. Examples include spectral methods for learning latent
variable models such as Gaussian mixtures, topic or admixture models,
independent component analysis (ICA) and so on that we discussed
in the previous sections. Moreover, there have been recent advances in
non-parametric score matching methods (Sriperumbudur et al., 2013)
for density estimation in infinite dimensional exponential families with
guaranteed convergence rates. These methods can be used to estimate
the input pdf in an unsupervised manner. Below, we discuss more about
score function estimation methods. In this work, we focus on how we
can use the input generative information to make training of neural
networks tractable. We refer the interested reader to Janzamin et al.
(2015) for more discussions on this.

Estimation of score function There are various efficient methods for
estimating the score function. The framework of score matching is
popular for parameter estimation in probabilistic models (Hyvärinen,
2005; Swersky et al., 2011), where the criterion is to fit parameters based
on matching the data score function. Swersky et al. (2011) analyze the
score matching for latent energy-based models. In deep learning, the
framework of auto-encoders attempts to find encoding and decoding
functions which minimize the reconstruction error under added noise;
the so-called Denoising Auto-Encoders (DAE). This is an unsupervised
framework involving only unlabeled samples. Alain and Bengio (2012)
argue that the DAE approximately learns the first order score function
of the input, as the noise variance goes to zero. Sriperumbudur et al.
(2013) propose non-parametric score matching methods for density
estimation in infinite dimensional exponential families with guaranteed
convergence rates. Therefore, we can use any of these methods for

4.5. Applications in Supervised Learning 485

estimating S1(x) and use the recursive form (Janzamin et al., 2014)

Sm(x) = −Sm−1(x)⊗∇x log p(x)−∇xSm−1(x)

to estimate higher order score functions. Despite the existence of these
techniques, there still exist so much room for proposing methods to
efficiently estimate score functions.

Tensor form of the moment

The score functions are new representations (extracted features) of input
data x that can be used for training neural networks. The score functions
have the property of yielding differential operators with respect to the
input distribution. More precisely, for label-function f̃(x) := E[ỹ|x],
Janzamin et al. (2014) show that

E[ỹ · S3(x)] = E[∇(3)
x f̃(x)]. (4.5)

Now for the neural network output in (4.2), note that the function
f̃(x) is a non-linear function of both input x and weight matrix A1.
The expectation operator E[·] averages out the dependency on x, and
the derivative acts as a linearization operator as follows. In the neural
network output (4.2), we observe that the columns of weight vector
A1 are the linear coefficients involved with input variable x. When
taking the derivative of this function, by the chain rule, these linear
coefficients show up in the final form. With this intuition, we are now
ready to provide the precise form of the moment where we show how
the cross-moment between label and score function as E[ỹ · S3(x)] leads
to a tensor decomposition form for estimating weight matrix A1:

Lemma 4.7 ((Janzamin et al., 2015)). For the two-layer neural network
specified in (4.2), we have

E [ỹ · S3(x)] =
∑
j∈[k]

λj · (A1)j ⊗ (A1)j ⊗ (A1)j , (4.6)

where (A1)j ∈ Rd denotes the j-th column of A1, and

λj = E
[
σ′′′(zj)

]
· a2(j), (4.7)

for vector z := A>1 x+ b1 as the input to the nonlinear operator σ(·).

486 Applications of Tensor Methods

This is proved by the main property of score functions as yielding
differential operators that was described earlier. This lemma shows
that by decomposing the cross-moment tensor E[ỹ · S3(x)], we can
recover the columns of A1. This clarifies how the score function acts as
a linearization operator while the final output is nonlinear in terms of
A1.

4.6 Other Models

Tensor decompositions have been applied to learn many other models.
Several ideas we introduced in this section originated from more compli-
cated settings, and can be applied to more models. Here we give hints
to more examples, but the list is by no means complete.

The idea of manipulating moments was well-known in the ICA
(Independent Component Analysis) literature, where cumulants are
used frequently instead of moments. For other distributions, it was used
for the Latent Dirichlet Allocation (Anandkumar et al., 2012a), and
widely applied in all the models where the hidden variables are not
categorical.

The multi-view model was first used in Mossel and Roch (2006) to
learn Hidden Markov Models and Phylogeny Tree Reconstruction. The
original technique in Mossel and Roch (2006) was based on spectral
algorithms and was not viewed as tensor decomposition, however it is
very similar to the simultaneous diagonalization algorithm we introduced
in Section 3.6.

Tensor methods can be also applied to learning more complicated
mixtures of Gaussians, where each component may have a different, non-
spherical component (Ge et al., 2015b). The covariance matrix creates
many technical problems which is beyond the scope of this monograph.
The idea of creating different views as we discussed in Section 4.3 can be
also applied to learning community models (Anandkumar et al., 2013).

Tensor decomposition is also particularly useful in the context of deep
neural networks, most notably with the aim to speed up computation.
One way to do so is to apply tensor factorization to the kernel of
convolutional layers (Tai et al., 2016). In particular, by applying CP
decomposition to the convolutional kernel of a pre-trained network,

4.6. Other Models 487

not only is it possible to reduce the number of parameters, but it also
gives a way of re-expressing the convolution in terms of a series of
smaller and more efficient convolutions. Both ALS (Lebedev et al.,
2015) and tensor power method (Astrid and Lee, 2017) have been
considered. This process typically results in a performance deterioration
which is restored by fine-tuning. A similar result can be obtained using
Tucker decomposition (Kim et al., 2016). It is possible to go further
and jointly parameterize multiple layers or whole networks, resulting
in large parameter space savings without loss of performance (Kossaifi
et al., 2019a).

We can also preserve the multi-linear structure in the activation
tensor, using tensor contraction (Kossaifi et al., 2017), or by removing
fully connected layers and flattening layers altogether and replacing
with tensor regression layers (Kossaifi et al., 2018). Adding a stochastic
regularization on the rank of the decomposition can also help render
the models more robustly (Kolbeinsson et al., 2019). Tensorization can
be also leveraged by applying it to the weight matrix of fully-connected
layers (Novikov et al., 2015).

5
Practical Implementations

We have so far covered many aspects of tensors including tensor decom-
position and how they are useful in learning different machine learning
models in both supervised and unsupervised settings. In this section,
we discuss practical implementation of tensor operations using Python
programming language. We first motivate our choice and introduce some
actual code to perform tensor operations and tensor decomposition.
We then briefly show how to perform more advanced tensor operations
using TensorLy (Kossaifi et al., 2019b), a library for tensor learning
in Python. Finally, we show how to scale up our algorithms using the
PyTorch deep learning framework (Paszke et al., 2017) as a backend
for TensorLy.

5.1 Programming Language and Framework

Throughout this section, we present the implementations in Python lan-
guage. Python is a multi-purpose and powerful programming language
that is emerging as the prime choice for Machine Learning and data
science. Its readability allows us to focus on the underlying concepts
we are implementing without getting distracted by low-level considera-
tions such as memory handling or obscure syntax. Its huge popularity

488

5.2. Tensors as NumPy Arrays 489

means that good libraries exist to solve most of our computational
needs. In particular, NumPy (Walt et al., 2011) is an established and
robust library for numerical computation. It offers a high performance
structure for manipulating multi-dimensional arrays. TensorLy builds
on top of this and provides a simple API for fast and easy tensor
manipulation. TensorLy has a system of backends that allows you to
switch transparently from NumPy to PyTorch, MXNet, TensorFlow,
etc. This means you can perform any of the operations seamlessly on
all these frameworks. In particular, using a deep learning framework
such as PyTorch as backend, it is easy to scale operations to GPUs and
multi-machines.

5.1.1 Pre-requisite

In order to run the codes presented in this section, you will need a
working installation of Python 3.0, along with NumPy (for the numerical
array structure), SciPy (Jones et al., 2001) (for scientific python), and
optionally Matplotlib (Hunter, 2007) for visualization.

The easiest way to get all these is to install the Anaconda distribution
(https://anaconda.org/) which comes with all the above bundled and
pre-compiled so you do not have to do anything else!

5.2 Tensors as NumPy Arrays

You may recall from Section 3.1 that tensors can be identified as multi-
dimensional arrays. Therefore, we represent tensors as NumPy arrays,
which are multi-dimensional arrays.

Let’s take as an example a tensor T ∈ R3×4×2, defined by the
following frontal slices:

T (:, :, 1) =

 0 2 4 6
8 10 12 14
16 18 20 22


and

https://anaconda.org/

490 Practical Implementations

T (:, :, 2) =

 1 3 5 7
9 11 13 15
17 19 21 23


In NumPy we can instantiate new arrays from nested lists of values.

For instance, matrices are represented as a list of rows, where each row
is itself a list. Let’s define the slices of above tensor T as 2-D NumPy
arrays:

1 # We f i r s t import numpy
2 import numpy as np
3
4 # F i r s t f r o n t a l s l i c e
5 T1 = np . array ([[0 . , 2 . , 4 . , 6 .] ,
6 [8 . , 1 0 . , 1 2 . , 1 4 .] ,
7 [1 6 . , 1 8 . , 2 0 . , 2 2 .]])
8
9 # Second f r o n t a l s l i c e

10 T2 = np . array ([[1 . , 3 . , 5 . , 7 .] ,
11 [9 . , 1 1 . , 1 3 . , 1 5 .] ,
12 [1 7 . , 1 9 . , 2 1 . , 2 3 .]])

Let’s now write a function that stacks these frontal slices into a
third order tensor:

1 def t e n s o r _ f r o m _ f r o n t a l _ s l i c e s (∗ m a t r i c e s) :
2 " " " Creates a t e n s o r from i t s f r o n t a l s l i c e s
3
4 Parameters
5 −−−−−−−−−−
6 m a t r i c e s : 2D−Numpy a r r a y s
7
8 Returns
9 −−−−−−−

10 t e n s o r : 3D−NumPy a r r a y s
11 i t s f r o n t a l s l i c e s are the m a t r i c e s passed as input
12 " " "
13 return np . concatenate ([matrix [: , : , np . newaxis] \
14 for matrix in m a t r i c e s] , a x i s =−1)

We can then build the full tensor T from its frontal slices T1 and
T2 created above:

1 T = t e n s o r _ f r o m _ f r o n t a l _ s l i c e s (T1 , T2)

5.2. Tensors as NumPy Arrays 491

We can inspect the frontal slices naturally using almost the same
notation as in the math. To do so we fix the last index while iterating
over other modes (using ‘:’).

1 >>> T [: , : , 0]
2 array ([[0 . , 2 . , 4 . , 6 .] ,
3 [8 . , 1 0 . , 1 2 . , 1 4 .] ,
4 [1 6 . , 1 8 . , 2 0 . , 2 2 .]])
5 >>> T [: , : , 1]
6 array ([[1 . , 3 . , 5 . , 7 .] ,
7 [9 . , 1 1 . , 1 3 . , 1 5 .] ,
8 [1 7 . , 1 9 . , 2 1 . , 2 3 .]])

Remember that in NumPy (and generally, in Python), like in C,
indexing starts at zero. In the same way, you can also inspect the
horizontal slices (by fixing the first index) and lateral slices (by fixing
the second index).

Similarly, we can easily inspect the fibers which, as you may recall,
are higher-order analogues to column and rows. We can obtain the
fibers of T by fixing all indices but one:

1 # F i r s t column (mode−1 f i b e r)
2 >>> T [: , 0 , 0]
3 array ([0 . , 8 . , 1 6 .])
4
5 # F i r s t row (mode−2 f i b e r)
6 >>> T[0 , : , 0]
7 array ([0 . , 2 . , 4 . , 6 .])
8
9 # F i r s t tube (mode−3 f i b e r)

10 >>> T[0 , 0 , :]
11 array ([0 . , 1 .])

Finally, you can access the size of a tensor via its shape, which
indicates the size of the tensor along each of its modes. For instance,
our tensor T has shape (3, 4, 2):

1 >>> T. shape
2 (3 , 4 , 2)

492 Practical Implementations

Procedure 9 Tensor unfolding
input Tensor T of shape (d1, d2, · · · , dn); unfolding mode m.
output Mode-m matricization (unfolding)
1: Move the mth dimension to the first position.
2: Reshape into a matrix M of shape (dm,

∏
k 6=m dk).

3: return M .

5.3 Basic Tensor Operations and Decomposition

Tensor matricization, or unfolding, as introduced in Equation (3.2)
and described in Procedure 9 naturally translates into Python. One
important consideration when implementing algorithms that manipulate
tensors is the way elements are organised in memory. You can think of
the memory as one long vector of numbers. Because of the way CPU and
GPU operate, it matters how these elements are layered in the memory.
To store a matrix, for instance, we can either organise the elements
row-after-row (also called C-ordering) or column-after-column (also
called Fortran ordering). In NumPy, elements are organised by default
in row-order, same for PyTorch. It so happens that the definition of the
unfolding we use is adapted for such ordering, thus avoiding expensive
reordering of the data.

As a result, matricization (or unfolding) of a tensor along a given
mode simplifies to moving that mode to the front and reshaping into a
matrix as also described in Procedure 9.

1 def unfo ld (tensor , mode) :
2 " " " Returns u n f o l d i n g o f a t e n s o r −− modes s t a r t i n g at 0 .
3
4 Parameters
5 −−−−−−−−−−
6 t e n s o r : ndarray
7 mode : i n t (d e f a u l t i s 0) , mode along which to unfo ld
8
9 Returns

10 −−−−−−−
11 ndarray
12 unfo lded_tensor o f shape
13 " " "
14 return np . reshape (np . moveaxis (tensor , mode , 0) ,
15 (t e n s o r . shape [mode] , −1))

5.3. Basic Tensor Operations and Decomposition 493

Folding the tensor is done by performing the inverse operations: we
first reshape the matrix into a tensor and move back the first dimension
to its original position.

1 def f o l d (unfolded_tensor , mode , shape) :
2 " " " Re fo lds the unfo lded t e n s o r i n t o a f u l l t e n s o r .
3 In other words , r e f o l d s the n−mode unfo lded t e n s o r
4 i n t o the o r i g i n a l t e n s o r o f the s p e c i f i e d shape .
5
6 Parameters
7 −−−−−−−−−−
8 unfo lded_tensor : ndarray
9 unfo lded t e n s o r o f shape ‘ ‘ (shape [mode] , −1) ‘ ‘

10 mode : i n t
11 the mode o f the u n f o l d i n g
12 shape : t u p l e
13 shape o f the o r i g i n a l t e n s o r b e f o r e u n f o l d i n g
14
15 Returns
16 −−−−−−−
17 ndarray
18 f o l d ed _ te n so r o f shape ‘ shape ‘
19 " " "
20 f u l l _ s h a p e = l i s t (shape)
21 mode_dim = f u l l _ s h a p e . pop (mode)
22 f u l l _ s h a p e . i n s e r t (0 , mode_dim)
23 return np . moveaxis (np . reshape (
24 unfolded_tensor , f u l l _ s h a p e) , 0 , mode)

5.3.1 CP decomposition

Now that we know how to manipulate tensors using NumPy arrays, we
are ready to implement a simple version of the CP decomposition via
Alternating Least Squares, as explained in Section 3.7. We will start by
writing the auxiliary functions we need in the main algorithm.

CP decomposition expresses its input tensor as a sum of outer
products of vectors; see Equation (3.6) for the definition. Taking the
unfolded expression, there is a useful equivalent formulation that uses
the Khatri-Rao product which we used in Equation (3.31). In particular,
for vectors u, v, w, we have

mat(u⊗ v ⊗ w, 1) = u · (v � w)>.

Note that here, mat(., 1) corresponds to unfolding along mode 0 in our
code.

494 Practical Implementations

Let’s first write a function to take the Khatri-Rao product of two
matrices, as defined in equation (3.9). A naive, literal implementation
of that equation could be as follows:

1 def naive_khatri_rao (A, B) :
2 # Both m a t r i c e s must have the same number o f columns k
3 d1 , k = A. shape
4 d2 , k = B. shape
5
6 # The khatr i −rao product has s i z e d1d2 x k
7 C = np . z e r o s ((d1∗d2 , k))
8 for i in range (d1) :
9 for l in range (d2) :

10 for j in range (k) :
11 # Indexing s t a r t s at 0 !
12 C[l + i ∗d1 , j] = A[i , j] ∗B[l , j]
13 return C

However, loops are typically slow in Python and this naive imple-
mentation is as a result extremely slow. By contrast, we can use the
built-in einsum function from NumPy, which uses Einstein’s notation
to define the operation, to write a vectorized version. This results in a
much more efficient function:

1 def khatr i_rao (matrix1 , matrix2) :
2 " " " Returns the khatr i −rao product o f matrix1 and matrix2
3 " " "
4 n_columns = matrix1 . shape [1]
5 r e s u l t = np . einsum (’ i j , l j −> i l j ’ , matrix1 , matrix2)
6 return r e s u l t . reshape ((−1 , n_columns))

Recall that the khatri-rao takes a column-wise Kronecker product of
two matrices with the same number of columns. The einsum function
here expresses this idea in terms of indices, where A is indexed by i and
j and B is indexed by l and j. The output is of size ilj and we simply
have to reshape it into a matrix of the appropriate size.

Then, given a third order tensor in its Kruskal form (i.e., a decom-
posed tensor, expressed as a series of factors A,B and C with unit norm
and the associated vector of coefficients λ implying the norms), we
need a method to return the reconstruction T =

∑
j∈[k] λj aj ⊗ bj ⊗ cj .

Using the above matricization property, this reconstruction can also
be written in its unfolded form as mat(T, 1) = Ã · diag(λ̃) · (B̃ � C̃)>,

5.3. Basic Tensor Operations and Decomposition 495

resulting in the following function:

1 def kruskal_to_tensor (weights , A, B, C) :
2 " " " Converts the k r u s k a l form i n t o a t e n s o r
3 " " "
4 f u l l _ s h a p e = (A. shape [0] , B. shape [0] , C. shape [0])
5 # Reconstruct in unfo lded form
6 unfo lded_tensor = np . dot (A. dot (np . diag (weights)) ,
7 khatr i_rao (B, C) .T)
8 # Fold back to a t e n s o r
9 return f o l d (unfolded_tensor , 0 , f u l l _ s h a p e)

To measure convergence, we can use, for instance, the Frobenius
norm of the reconstruction error. Recall that the Frobenius norm is
simply the square root of the sum of the squared elements of the tensor.
This can be written in NumPy as :

1 def frobenius_norm (t e n s o r) :
2 " " " Frobenius norm o f the t e n s o r
3 " " "
4 return np . s q r t (np .sum(t e n s o r ∗∗2))

We are now ready to implement the Alternating Least Squares
method for Tensor Decomposition described in Algorithm 8.

1 def p a r a f a c (tensor , rank , l2_reg=1e −3, n_iter_max=200 , t o l =1e −10):
2 " " "CANDECOMP/PARAFAC decomposit ion v ia ALS
3
4 Parameters
5 −−−−−−−−−−
6 t e n s o r : ndarray
7 rank : i n t
8 number o f components
9 l2_reg : f l o a t , d e f a u l t i s 0 . 1

10 r e g u l a r i z a t i o n parameter (\ alpha)
11 n_iter_max : i n t
12 maximum number o f i t e r a t i o n s
13 t o l : f l o a t , o p t i o n a l
14 t o l e r a n c e : the a lgor i thm s t o p s when the v a r i a t i o n in
15 the r e c o n s t r u c t i o n e r r o r i s l e s s than the t o l e r a n c e
16 verbose : int , o p t i o n a l
17 l e v e l o f v e r b o s i t y
18
19 Returns
20 −−−−−−−
21 weights , A, B, C : weights , f a c t o r s o f the decomposit ion
22 " " "
23 # I n i t i a l i z e the f a c t o r s o f the decomposit ion randomly
24 A = np . random . random_sample ((t e n s o r . shape [0] , rank))
25 B = np . random . random_sample ((t e n s o r . shape [1] , rank))

496 Practical Implementations

26 C = np . random . random_sample ((t e n s o r . shape [2] , rank))
27
28 # Norm o f the input t e n s o r
29 norm_tensor = frobenius_norm (t e n s o r)
30 e r r o r = None
31
32 # I n i t a l i z e the weights to 1
33 weights = np . ones (rank)
34
35 # Avoid d i v i s i o n by z ero
36 eps = 1e−12
37
38 # R e g u l a r i z a t i o n term \ alpha ∗ I
39 r e g u l a r i z a t i o n = np . eye (rank)∗ l2_reg
40
41 for i t e r a t i o n in range (n_iter_max) :
42 # Update A
43 prod = B.T. dot (B)∗C.T. dot (C) + r e g u l a r i z a t i o n
44 f a c t o r = unfo ld (tensor , 0) . dot (khatr i_rao (B, C))
45 A = np . l i n a l g . s o l v e (prod .T, f a c t o r .T) .T
46 # Normal izat ion (o f the columns) o f A
47 weights = np . l i n a l g . norm (A, ord =2, a x i s =0)
48 A /= (weights [None , :] + eps)
49
50 # Update B
51 prod = A.T. dot (A)∗C.T. dot (C) + r e g u l a r i z a t i o n
52 f a c t o r = unfo ld (tensor , 1) . dot (khatr i_rao (A, C))
53 B = np . l i n a l g . s o l v e (prod .T, f a c t o r .T) .T
54 # Normal izat ion o f B
55 weights = np . l i n a l g . norm (B, ord =2, a x i s =0)
56 B /= (weights [None , :] + eps)
57
58 # Update C
59 prod = A.T. dot (A)∗B.T. dot (B) + r e g u l a r i z a t i o n
60 f a c t o r = unfo ld (tensor , 2) . dot (khatr i_rao (A, B))
61 C = np . l i n a l g . s o l v e (prod .T, f a c t o r .T) .T
62 # Normal izat ion o f C
63 weights = np . l i n a l g . norm (C, ord =2, a x i s =0)
64 C /= (weights [None , :] + eps)
65
66 # Compute the r e c o n s t r u c t i o n e r r o r
67 prev_error = e r r o r
68 r e c = kruskal_to_tensor (weights , A, B, C)
69 e r r o r = frobenius_norm (t e n s o r − r e c) / norm_tensor
70
71 i f i t e r a t i o n > 1 :
72 i f t o l and abs (prev_error − e r r o r) < t o l :
73 print (’ converged in {} i t e r a t i o n s . ’ . format (
74 i t e r a t i o n))
75 break
76
77 return weights , A, B, C

Using our previously introduced tensor T as an example, we can
verify that our algorithm indeed does what it is supposed to:

1 # decompose T i n t o f a c t o r s us ing CP
2 weights , A, B, C = p a r a f a c (T, 3)

5.3. Basic Tensor Operations and Decomposition 497

3
4 # r e c o n s t r u c t the f u l l t e n s o r from t h e s e
5 r e c = kruskal_to_tensor (weights , A, B, C)
6
7 # v e r i f y that the r e c o n s t r u c t i o n i s c o r r e c t
8 np . t e s t i n g . assert_array_equal (np . round (r e c) , T)

Let’s now go over some aspects of the algorithm we just wrote, in
particular, how we integrated unit-norm constraints on the columns of
the factor, as well as `2 regularization.

Normalization: Within the CP decomposition method, after updating
each factor, we further normalize it by dividing each column by its
norm, as also done in equation (3.32). For example, for the first factor
matrix A, we have:

1 # F i r s t , update the f a c t o r as p r e v i o u s l y
2 A = np . l i n a l g . s o l v e (prod .T, f a c t o r .T) .T
3
4 # Normalize the columns
5 weights = np . l i n a l g . norm (A, ord =2, a x i s =0)
6 A /= (weights [None , :] + eps)

We do similar normalization for the other two factor matrices B and
C. Note that we have also added a tiny value eps to the normalization,
where eps is defined as 10−12, which is close to machine precision. This
additional term is used to avoid any division by zero. Note that, here,
we are using float64, which has a machine epsilon of about 10−15, this
would have to be adapted when changing the data type (e.g. to float32).

Broadcasting: In the last line of the update of A, the expression
weights[None, :] is equivalent to weights[np.newaxis, :]. In other
words, we add a dimension (of 1) to weights, and consider it as a matrix
of size (1, rank) rather than a vector of length rank. This allows us to
use broadcasting: weight is broadcasted to the same shape as the factor
without actually duplicating the memory. This results in an efficient
vectorized operation which divides each element of each column of the
factor by the norm of that column.

This concept of broadcasting can also be used to simplify our

498 Practical Implementations

kruskal_to_tensor by replacing the matrix multiplication of the first
factor A and diag(weights) with a simple element-wise multiplication:

1 def kruskal_to_tensor (weigths , A, B, C) :
2 " " " Converts the k r u s k a l form i n t o a t e n s o r
3 " " "
4 f u l l _ s h a p e = (A. shape [0] , B. shape [0] , C. shape [0])
5 # The main d i f f e r e n c e : we i n c o r p o r a t e the weights
6 unfo lded_tensor = np . dot (A∗ weigths [np . newaxis , :] ,
7 khatr i_rao (B, C) .T)
8 return f o l d (unfolded_tensor , 0 , f u l l _ s h a p e)

Regularization: In section 3.7, we also introduced an `2 regularized
version of the ALS. The difference with the unregularized version is
an additional term in the pseudo-inverse in the ALS updates; see
Equation (3.33). Considering a regularization parameter α = l2_reg,
the update for factor A changes by the addition of a weighted identity
matrix αI to the product (B̃ � C̃)>(B̃ � C̃) and similarly for B and C.
In the code, np.eye(rank) is the identity matrix of size rank× rank.

5.4 Example: Image Compression via Tensor Decomposition

We now use our function to compress an image. We use as an example
an image of a raccoon that comes shipped in with the SciPy library.

1 from s c i p y . misc import f a c e
2
3 # Load the f a c e
4 image = f a c e ()
5
6 # Convert i t to a t e n s o r o f f l o a t s
7 image = np . array (image , dtype=np . f l o a t 6 4)
8
9 # Check the s i z e o f the image

10 print (image . shape)
11 # (768 , 1024 , 3)

Our image is a third order tensor of shape (height, width, 3), the
last mode corresponding to the RGB channels (Red, Green, Blue), the
way colors are encoded on your computer. You can see the original
image in Figure 5.1, in this case with a height of 768 and a width of

5.4. Example: Image Compression via Tensor Decomposition 499

Figure 5.1: Our beautiful guinea pig, which happens to be a raccoon. On the left,
the original image, and on the right, the reconstructed image from the factors of the
decomposition, with a rank 50.

1024.
To visualize the tensor, we need a helper function to convert tensors

of floats (typically stored into 64 bits) into an image, which consists
of values stored into 8 bits. Here, a simple conversion suffices since
the image already has a dynamic range between 0 and 255 as it was
originally stored in 8 bits. If the image had a high dynamic range (higher
than 255) then a more complex transformation (tone mapping) such as
histogram equalization would be needed.

1 def to_image (t e n s o r) :
2 " " " convert a t e n s o r o f f l o a t v a l u e s i n t o an image
3 " " "
4 t e n s o r −= t e n s o r . min()
5 t e n s o r /= t e n s o r .max()
6 t e n s o r ∗= 255
7 return t e n s o r . astype (np . u int8)

This type of conversion, called tone mapping, can be much more
complex than this simple conversion. Since we have a dynamic range
between 0 and 255, it is appropriate here, but in general, when converting
an image from 32 bits to just 8, we might want to use more complex
techniques such as histogram normalization.

Now that the image is loaded in memory, we can apply our de-
composition method to it, and build a reconstructed image from the
compressed version, i.e., the factors of the decomposition,

500 Practical Implementations

1 # Apply CP decomposit ion
2 weights , A, B, C = f a c t o r s = p a r a f a c (image , rank =50, t o l =10e −6)
3
4 # Reconstruct the f u l l image
5 r e c = kruskal_to_tensor (weights , A, B, C)

If you want to visualise the result, you can do so easily with Mat-
plotlib:

1 rec_image = to_image (r e c)
2
3 #Import m a t p l o t l i b to p l o t the image
4 import m a t p l o t l i b . pyplot as p l t
5 p l t . imshow (rec_image)
6 p l t . show ()

The original image, shows in Figure 5.1, has height×width×#channels
= 768×1024×3 = 2, 359, 296 elements. The decomposition, on the other
hand, expresses the image as a series of factors A, B and C containing
respectively height× rank = 768× 50, width× rank = 1024× 50 and
channels× rank = 3× 50. In addition, we have to count the elements
of weights, which is a vector of length equal to the rank. In total,
the decomposition only has a total of less than 90, 000 parameters, or
approximately 26× less than the original image. Yet, as you can see
in Figure 5.1, the reconstructed image looks visually similar to the
uncompressed image.

Note that the CP decomposition is not the best fit here, since the
same rank is used for all modes, including the RGB channels. This is a
case where a Tucker decomposition would be more adapted as we can
select the Tucker rank (or multi-linear rank) to more closely match that
of the input tensor.

5.5 Going Further with TensorLy

We have so far shown how to implement some basic tensor manipulation
functions as well as a CP decomposition algorithm based on Alternating
Least Squares method. However, in practice, we want well-tested and
robust algorithms that work at scale. This already exists in the TensorLy

5.6. Scaling up with PyTorch 501

library, which implements the methods presented in this section, and
several more including Tucker decomposition, Robust Tensor PCA,
low-rank tensor regression, etc.

The easiest way is to install TensorLy with pip (by simply typing
pip install tensorly in the console). You can also install it directly from
source at https://github.com/tensorly/tensorly.

When you have it installed, the usage is similar to what we have
introduced above:

1 import t e n s o r l y as t l
2 import numpy as np
3
4 # Create a random t e n s o r :
5 T = t l . t e n s o r (np . random . random ((1 0 , 10 , 1 0)))
6
7 # unfo ld the t e n s o r :
8 u n f o l d i n g = t l . unfo ld (T, mode=0)
9

10 # f o l d i t back i n t o a t e n s o r
11 t l . f o l d (unfo ld ing , mode=0, shape=t l . shape (T))

Decompositions are already implemented and can be readily applied
to an input tensor:

1 from t e n s o r l y . decomposit ion import parafac , tucker
2
3 # CP decomposit ion
4 weights , f a c t o r s = p a r a f a c (T, rank =3, n o r m a l i z e _ f a c t o r s=True)
5
6 # Tucker decomposit ion r e t u r n s a c or e t e n s o r and f a c t o r m a t r i c e s
7 core , f a c t o r s = tucker (T, ranks =[3 , 2 , 4])

You can also easily perform tensor regression using TensorLy, with
a similar API that scikit-learn (Pedregosa et al., 2011) offers. Refer to
the website for a detailed tutorial1 and API guide.

5.6 Scaling up with PyTorch

All the examples we have presented so far used small tensors that
fit nicely in the memory of most commodity laptops and could be

1https://tensorly.github.io/dev/

https://github.com/tensorly/tensorly
https://tensorly.github.io/dev/

502 Practical Implementations

run quickly on their CPUs. However, as the size of the data and the
complexity of the algorithms grow, we need highly-optimized functions
that run on both GPU and CPU and on several machines in parallel.
Running in multi-machines setup introduces the challenge of distributed
inference and training. These can be incredibly complex to implement
correctly. Fortunately, libraries exist that take care of it for you and let
you focus on the logic of your model. One notable such framework is
PyTorch (Paszke et al., 2017).

By default, TensorLy uses NumPy as its backend. However, you
can easily switch to PyTorch, a deep learning framework optimized
for running large scale methods. Once you have installed PyTorch,
you can easily use it as a backend for TensorLy and have all the
operations run transparently on multiple machines and GPU. While
CPUs performs operations on tensors in a mostly sequential way, GPUs
accelerate operations by running them efficiently in parallel: modern
CPUs typically contain up to 16 cores, while a GPU has thousands of
them.

1 import t e n s o r l y as t l
2 import torch
3
4 # Use PyTorch as the backend
5 t l . set_backend (’ pytorch ’)
6
7 # Create a random t e n s o r :
8 T = t l . t e n s o r (np . random . random ((1 0 , 10 , 1 0)))
9

10 type (T) # torch . Tensor !
11
12 # You can a l s o s p e c i f y where the t e n s o r l i v e s :
13 T = t l . t e n s o r (np . random . random ((1 0 , 10 , 1 0)) , d e v i c e= ’ cuda : 0 ’)

Now, not only do all the algorithms in TensorLy run on GPU and
CPU, you can also interface it easily with PyTorch and Deep Learning
algorithms:

1 # Let ’ s c r e a t e a random number g e n e r a t o r (rng)
2 random_state = 1234
3 rng = t l . random . check_random_state (random_state)
4
5 # You can put your t e n s o r on cpu or gpu
6 d e v i c e = ’ cpu ’ # Or ’ cuda : 0 ’
7

5.6. Scaling up with PyTorch 503

8 # Create a random t e n s o r
9 shape = [5 , 5 , 5]

10 t e n s o r = t l . t e n s o r (rng . random_sample (shape) , d e v i c e=d e v i c e)

We have created a random tensor, which we will try to decompose
in the Tucker form. This time, however, we will optimize the factors
using gradient descent.

And this is where the magic happens: we can attach gradients to
the tensors, using requires_grad parameter.

1 #I n i t i a l i z e a random Tucker decomposit ion o f that t e n s o r
2
3 # We choose a rank f o r the decomposit ion
4 rank = [5 , 5 , 5]
5
6 # We i n i t i a l i z e a random Tucker c ore
7 co re = t l . t e n s o r (rng . random_sample (rank) , requ i res_grad=True ,
8 d e v i c e=d e v i c e)
9

10 # We c r e a t e a l i s t o f random f a c t o r s
11 f a c t o r s = []
12 for i in range (t l . ndim (t e n s o r)) :
13 f a c t o r = t l . t e n s o r (rng . random_sample (
14 (t e n s o r . shape [i] , rank [i])) ,
15 requi res_grad=True , d e v i c e=d e v i c e)
16 f a c t o r s . append (f a c t o r)
17
18 #Let ’ s use the s i m p l e s t p o s s i b l e l e a r n i n g method : SGD
19 def SGD(params , l r) :
20 for param in params :
21 # Gradient update
22 param . data −= l r ∗ param . grad . data
23 # Reset the g r a d i e n t s
24 param . grad . data . zero_ ()

Now we can iterate through the training loop using gradient back-
propagation:

1 n_iter = 7000
2 l r = 0 .01
3 penalty = 0 . 1
4
5 for i in range (1 , n_iter + 1) :
6 # Reconstruct the t e n s o r from the decomposed form
7 r e c = t l . tucker_to_tensor ((core , f a c t o r s))
8
9 # l 2 l o s s

10 l o s s = t l . norm (r e c − tensor , 2)
11
12 # l 2 penal ty on the f a c t o r s o f the decomposit ion
13 for f in f a c t o r s :

504 Practical Implementations

14 l o s s = l o s s + penalty ∗ t l . norm (f , 2)
15
16 l o s s . backward ()
17 SGD([c or e] + f a c t o r s , l r)
18
19 i f i % 100 == 0 :
20 r e c _ e r r o r = t l . norm (r e c − tensor , 2)/ t l . norm (tensor , 2)
21 print (" Epoch { } , . Rec . e r r o r : {} " . format (i , r e c _ e r r o r))
22
23 i f i % 3000 == 0 :
24 # Learning r a t e decay every 3000 i t e r a t i o n s
25 l r /= 10

You will see the loss gradually go down as the approximation im-
proves. You can verify that the relative reconstruction error is indeed
small (we compute the error within a no_grad context as we do not
want to compute gradients here):

1 with torch . no_grad () :
2 # r e c o n s t r u c t the f u l l t e n s o r from t h e s e
3 r e c = t l . tucker_to_tensor ((core , f a c t o r s))
4 r e l a t i v e _ e r r o r = t l . norm (r e c − t e n s o r)/ t l . norm (t e n s o r)
5
6 print (r e l a t i v e _ e r r o r)

To conclude, we have demonstrated in this section how to go from
theory to a working implementation of tensor methods. These are
powerful tools that can be efficiently leveraged using TensorLy. Using
PyTorch and TensorLy together, you can easily combine tensor methods
and Deep Learning, and run your model at scale across several machines
and GPUs on millions of data samples. Next, we will discuss further
practical considerations of tensor decomposition such as running time,
memory usage, and sample complexity.

6
Efficiency of Tensor Decomposition

In this section, we discuss the running time, memory usage and sample
complexity for algorithms based on tensor decomposition.

Tensors are objects of very high dimensions; even a 3rd order d×d×d
tensor with d = 10, 000 is already huge and hard to fit into memory of a
single machine. A common misconception about tensor decomposition
algorithms is that they need to use at least Θ(d3) memory, running
time and number of samples, because the intuition is one needs at
least one unit of resource for each entry in the tensor. This is in fact
far from truth and the requirements on these three resources can be
much smaller than O(d3). Furthermore, many tensor algorithms can be
naturally parallelized and some of them can be run in an online fashion
which greatly reduces the amount of memory required.

6.1 Running Time and Memory Usage

Storing a tensor explicitly as a high dimensional array and directly per-
forming the computations on the explicit tensor can be very expensive.
However, when applied to learning latent variable models and more
generally when the tensor has an intrinsic lower dimensional structure,
the tensor decomposition algorithms can often be made efficient.

505

506 Efficiency of Tensor Decomposition

Number of Components: Latent variable models represent observed
variables using hidden variables, e.g., Gaussian mixture model with
hidden Gaussian components, topic models with hidden topics and
many other models that we described in Section 4. The good news
is in most of the cases, the number of hidden components k is often
much smaller than the dimension d of observed variables. For example,
in topic modeling, the dimension d is equal to the number of words
in vocabulary, which is at least in the order of thousands, while the
number of topics can be k = 100 in many applications. In these cases,
after applying the Whitening Procedure proposed in Procedure 2 we
only need to work with a k × k × k tensor which is easy to store in
memory and allow for efficient computations.

6.1.1 Online Tensor Decomposition

Even when the number of components is large, it is still possible to run
many tensor decomposition algorithms without explicitly constructing
the tensor. This is because in most of the algorithms we only need to
consider the effect of the tensor applied to vectors/matrices and not
the whole tensor itself.

Tensor Power Method: It is very straightforward to convert each
iteration of tensor power method to an online algorithm. In many cases,
given samples x(1), . . . , x(n), the empirical tensor that we estimate can
be represented as 1

n

∑n
i=1 S(x(i)) where S(·) is a function that maps

a sample to a tensor. As an example, consider the multi-view model
as explained in Section 4.3. Each sample x consists of three views
(x1, x2, x3). Let S(x) = x1 ⊗ x2 ⊗ x3, then we desire to estimate the
mean tensor E[S(x)]. Given n samples {(x(i)

1 , x
(i)
2 , x

(i)
3), i ∈ [n]}, then

the estimated empirical tensor is

T̂ = 1
n

n∑
i=1

S(x(i)) = 1
n

n∑
i=1

x
(i)
1 ⊗ x

(i)
2 ⊗ x

(i)
3 . (6.1)

6.1. Running Time and Memory Usage 507

In tensor power method, the main iteration in (3.16) involves applying
the tensor T̂ to vectors u, v, which can be easily done as

T̂ (u, v, I) = 1
n

n∑
i=1
〈x(i)

1 , u〉〈x(i)
2 , v〉x(i)

3 . (6.2)

Clearly, using this formula we only need to compute two inner-products
for each sample, and the algorithm never needs to store more than a
constant number of vectors.

Claim 2 (Online Tensor Power Iteration). In many settings, one iteration
of tensor power method can be done in time O(nd), where n is the
number of samples and d is the dimension. If number of samples is large
enough, the algorithm is guaranteed to find an accurately estimated
component in O(nd log d) time with high probability.

Alternating Least Squares: ALS method relies on repeatedly solving
least square problems; see Algorithm 8 for the details. To simplify
the discussion, we focus on one step of the algorithm, where we are
given matrices A, B, eigenvalues λ and want to find C such that∑k
j=1 λjaj ⊗ bj ⊗ cj is as close to the empirical tensor T̂ as possible;

this is what Step 5 in Algorithm 8 does. All other steps are symmetric
and can be computed similarly.

First, we observe that the problem can be decoupled into d sub-
problems – one for finding each row of C. Consider the variant of
Equation (3.31) for updating matrix C (when A, B and λ are fixed),
and pick the i-th row of mat(T, 3) ∈ Rd×d2 and matricize it to a d× d
matrix. This leads to the following set of sub-problems to solve for
different rows of matrix C denoted by C(i),

min
C(i)

∥∥∥T̂ (I, I, ei)−
k∑
j=1

λjCi,jajb
>
j

∥∥∥
F
, i ∈ [d].

These d sub-problems can be solved in parallel which makes it faster to
run ALS.

Furthermore, we can use efficient gradient-based methods in the
context of online learning even without exploiting parallelization as

508 Efficiency of Tensor Decomposition

above. Recently there has been a lot of research on using online gradient-
based algorithms to solve least square problems (Shalev-Shwartz and
Zhang, 2013; Johnson and Zhang, 2013), and they can all be applied
here. A common assumption in these works is that the objective function
can be decomposed into the sum of n terms, where the gradient for
each term can be computed efficiently. More precisely, the optimization
should be of the form

min
C

n∑
i=1

f
(
C, x(i)

)
. (6.3)

The guarantee for these online algorithms can be stated in the following
informal statement.

Claim 3. Suppose the objective function in (6.3) is well-conditioned
and n is large enough, and the time for computing the gradient for a
single f is T . Then, there exist algorithms that can find the optimal
solution with accuracy ε in time O(Tn logn/ε).

In other words, when the problem is well-conditioned, the algorithms
only need a few passes on the data set to find an accurate solution.
Having these results for gradient-based methods, we now convert the
objective function of ALS to a form similar to the one in (6.3). Again
suppose we are in the setting that the empirical tensor can be computed
as average of S(x(i))’s; see Equation (6.1). Recall the original objective
function for ALS is

min
C

∥∥∥ k∑
j=1

λjaj ⊗ bj ⊗ cj − Ei∈[n]S(x(i))
∥∥∥2

F
,

where Ei∈[n](·) := 1
n

∑
i∈[n] ·(i). For any random variable X, we know

(a− E[X])2 = E[(a−X)2]− E[(X − E[X])2].

Therefore, we can rewrite the objective function as

min
C

1
n

n∑
i=1

∥∥∥ k∑
j=1

λjaj ⊗ bj ⊗ cj − S(x(i))
∥∥∥2

F
− 1
n

n∑
i=1
‖S(x(i))− T̂‖2F ,

6.2. Sample Complexity 509

where T̂ := 1
n

∑
i∈[n] S(x(i)). The second term does not depend on C,

so it can be ignored in the optimization problem. Let

f(C, x(i)) :=
∥∥∥ k∑
j=1

λjaj ⊗ bj ⊗ cj − S(x(i))
∥∥∥2

F
,

and thus, we have rewritten the objective function as 1
n

∑n
i=1 f(C, x(i)),

which is exactly the form required in (6.3). The gradient of f functions
w.r.t. to the columns of matrix C denoted by Ct can also be computed
as

∂

∂Ct
f(C, x(i)) = 2λt

k∑
j=1

λj〈aj , at〉〈bj , bt〉Cj − 2λtS(x(i))(at, bt, I).

Computing this stochastic gradient for all the entries of matrix C, i.e.,
all Ci,j ’s only take Θ(k2d) time. Then, combined with Claim 3 allows the
least squares problem to be solved efficiently. However, from an arbitrary
initialization, we do not have any theoretical bounds on the condition
number of these least-squares problems, or the number of iterations it
takes ALS to converge. Theoretical analysis of ALS algorithm is still an
open problem.

6.2 Sample Complexity

One major drawback of tensor decomposition algorithms is that they
often require a fairly large number of samples. A large number of samples
may be hard to get in practice, and can also slow down the algorithms –
as we just saw, many of the tensor decomposition algorithms can be
implemented so that they only need to go through the data set small
number of times.

A misleading intuition argues that in order to estimate every entry
of an d×d×d tensor to an accuracy of ε, one would need d3/ε2 samples,
which is often too large to be practical. However, this argument is based
on the incorrect assumptions that 1) each sample is highly noisy and
only provide a small amount of information; 2) the tensor decomposition
algorithms require every entry of the tensor to be estimated accurately.
The real number of samples required is distinct for different applications,
and is far from well-understood.

510 Efficiency of Tensor Decomposition

6.2.1 Tensor Concentration Bounds

In tensor decompositions, often we do not need to estimate every entry
of the tensor. Instead, we would like to approximate the tensor in a
certain norm, e.g., spectral norm, Frobenius norm and other norms
based on Sum-of-Squares relaxations are often used. For a specific norm,
tensor concentration bounds give estimates on how many samples we
need in order to estimate the tensor within some error ε.

When the norm is the Frobenius norm, or the spectral norm of some
unfolded version of the tensor (matricized version), the problem can
be reduced to vector concentration bounds or matrix concentration
bounds. There has been a lot of research on matrix concentrations,
many popular bounds can be found in Tropp, 2012.

Tensors with Independent Entries: For the spectral norm of the
tensor, one of the first concentration bounds is by Latała (2005), and
later generalized in Nguyen et al. (2010). They consider the case when
there is a random tensor T whose entries are independent random
variables with zero mean. For simplicity, we state the following corollary
to give a flavor on what they provide.

Corollary 6.1 (Corollary 3 of Nguyen et al., 2010). Suppose order-p tensor
T ∈ Rd1×d2×···×dp has i.i.d. standard Gaussian entries. Then for every
p, there exists a constant Cp > 0 such that with high probability,

‖T‖2 ≤ Cp max{d1, d2, . . . , dp}.

This shows the spectral norm of a Gaussian tensor only depends on
its largest dimension. More specifically, for a d× d× d× d tensor, its
spectral norm is still with high probability O(

√
d), which is much smaller

than its Frobenius norm Θ(d2) or the spectral norm of an unfolded
matricization Θ(d). The technique used in these papers is called the
“entropy-concentration”. The key idea is to argue about linear forms
T (v1, . . . , vp) separately for vectors vi’s that are sparse (low entropy)
and dense.

Tensors from Latent Variable Models: When the tensor is constructed
from a latent variable model (see Section 4 for many examples), the

6.2. Sample Complexity 511

coordinates of the tensor are often not independent. A case-by-case
analysis is required. Anandkumar et al. (2014b) analyzed the number
of samples required for multi-view model and independent component
analysis. The ideas used are again similar to the entropy concentration
approach, except a vector is considered “sparse” if it has large correla-
tion only with a few components. We provide the guarantee in a simple
multi-view model; refer to Anandkumar et al. (2014b) for more detailed
results.

Corollary 6.2 (Spectral Norm Bound for Multi-view Model by Anandkumar
et al. (2014b)). Consider a simple multi-view model where the latent
variable has k possibilities. Each sample is generated by first picking
a hidden variable h ∈ [k], and then observing x1 = ah + ζ1, x2 =
bh + ζ2, x3 = ch + ζ3. Here for h ∈ [k], ah’s, bh’s, ch’s are d-dimensional
conditional means and assumed to be random unit vectors, and ζ1, ζ2,
ζ3 are independent random Gaussian noise vectors whose variance is 1
in each coordinate. Given n samples {(x(i)

1 , x
(i)
2 , x

(i)
3) : i ∈ [n]}, let

T̂ := 1
n

n∑
i=1

x
(i)
1 ⊗ x

(i)
2 ⊗ x

(i)
3 ,

T := 1
n

n∑
i=1

hi ahi
⊗ bhi

⊗ chi
,

where hi denotes the true hidden value for the i-th sample. Then with
high probability,

‖T̂ − T‖ ≤ O(
√
d/n · poly logn).

Note that in the above model, the noise is extremely high where the
total norm of the noise is O(

√
d) compared to the norm of the signal

‖ah‖ = ‖bh‖ = ‖ch‖ = 1. Even in this high-noise regime, it only takes
d · poly log d samples to estimate the tensor with constant accuracy in
spectral norm. The result is tight up to poly log factors.

6.2.2 Case Study: Tensor PCA and Tensor Completion

Given a tensor T̂ = T + E where E is a perturbation tensor, concen-
tration bounds give us tools to bound the norm of error E. However,

512 Efficiency of Tensor Decomposition

different tensor decomposition algorithms may have different require-
ment on E. Finding the “most robust” tensor decomposition algorithm
is still an open problem. In this section, we will describe recent progress
in some specific problems.

Tensor PCA: The model of tensor PCA is very simple. There is an
unknown signal v ∈ Rd with ‖v‖ = 1. Now suppose we are given tensor

T̂ = τ · v ⊗ v ⊗ v + E,

where E ∈ Rd×d×d is a noise tensor whose entries are independent
standard Gaussians, and τ ∈ R is a scalar. The goal is to find a vector
that is within a small constant distance to v when T̂ is given. The
parameter τ determines the signal-to-noise ratio, and the problem is
easier when τ is larger. This problem was originally proposed by Richard
and Montanari, 2014 as a simple statistical model for tensor PCA.

If the algorithm can take exponential time, then the best solution is
to find the unit vector u that maximizes T̂ (u, u, u). By Corollary 6.1 we
know the spectral norm of E is bounded by O(

√
d), and therefore, as

long as τ ≥ C
√
d for some universal constant C, the optimal direction

u has to be close to v.
However, when the algorithm is required to run in polynomial time,

the problem becomes harder. The best known result is from Hopkins
et al. (2015) as follows.

Theorem 6.3 (Hopkins et al., 2015). If τ = Cd3/4 for some universal
constant C, then there is an efficient algorithm that finds a vector u such
that with high probability ‖u− v‖ ≤ 0.1. Moreover, no Sum-of-Squares
algorithm of degree at most 4 can do better.

The term d3/4 in the above theorem is between the information
theoretic limit

√
d and the trivial solution that treats the tensor as a d×

d2 matrix which gives Θ(d) bound for τ . The problem can also be solved
more efficiently using a homotopy optimization approach (Anandkumar
et al., 2017). However, it seems there are some fundamental difficulties
in going below d3/4.

6.2. Sample Complexity 513

Tensor Completion: A very closely related problem is called tensor
completion. In this problem, we observe a random subset of entries of a
low-rank tensor T , and the goal is to recover the original full low-rank
tensor. Barak and Moitra (2016) provide a tight bound on the number
of samples required to recover T .

Theorem 6.4 (Barak and Moitra, 2016, informal). Suppose tensor T ∈
Rd×d×d has rank k, given n = d1.5k poly log d random observations of
the entries of the tensor, there exists an algorithm that recovers T up
to a lower order error term.

For small k, the term d1.5k poly log d in the above guarantee is again
between information theoretic limit Θ(dk log d) and the trivial solution
that considers the tensor as a d× d2 matrix which gives Θ(d2k log d).
Barak and Moitra, 2016 showed the d1.5 dependency which is likely
to be tight because improving this bound will also give a better al-
gorithm for refuting random 3-XOR clauses (which is a conjectured
hard problem (Feige, 2002; Grigoriev, 2001; Schoenebeck, 2008)). The
algorithm is again based on Sum-of-Squares. Recently there were also
several improvements in the recovery guarantees, see e.g., Potechin and
Steurer (2017) and references therein.

7
Overcomplete Tensor Decomposition

Unlike matrices, the rank of a tensor can be higher than its dimension.
We call such tensors overcomplete. Overcomplete tensors can still have
a unique decomposition; recall Theorem 3.1 for 3rd order tensors and
see Sidiropoulos and Bro (2000) for higher order tensors. This is useful
in the application of learning latent variable models: it is possible to
learn a model with more components than the number of dimensions,
e.g., a mixture of 100 Gaussians in 50 dimensions.

However, finding a CP decomposition for an overcomplete tensor is
much harder than the undercomplete case (when the rank is at most
the dimension). In this section we will describe a few techniques for
decomposing overcomplete tensors.

7.1 Higher-order Tensors via Tensorization

For higher order tensors, the most straightforward approach to handle
overcomplete decomposition is to convert them to lower order tensors
but in higher dimension. We call this approach as tensorization and
describe it in this section. For simplicity, we restrict our attention to
symmetric tensors, but what we discuss here also applies to asymmetric

514

7.1. Higher-order Tensors via Tensorization 515

Algorithm 10 Decomposing Overcomplete Tensors via Tensorization
input tensor T =

∑k
j=1 a

⊗6
j

output rank-1 components aj , j ∈ [k]
1: Reshape the tensor T to T̂ ∈ Rd2×d2×d2 , each mode of T̂ is indexed

by [d]× [d], and T̂(i1,i2),(i3,i4),(i5,i6) = Ti1,i2,i3,i4,i5,i6 .
2: Use Tensor Power Method (Algorithm 6) to decompose T̂ =∑k

j=1 b
⊗3
j and recover bj ’s.

3: For each bj ∈ Rd2
, j ∈ [k], reshape it as a d × d matrix, and let

(λj , vj) be its top singular value-vector pair.
4: return

√
λjvj , j ∈ [k].

tensors. Consider a 6th order tensor

T =
k∑
j=1

λja
⊗6
j ,

with d-dimensional rank-1 components aj ∈ Rd, j ∈ [k], and real weights
λj ∈ R, j ∈ [k], where k � d. We can reshape this tensor as a 3rd order
tensor T̂ ∈ Rd2×d2×d2 as follows. Let

bj := aj � aj ∈ Rd
2
,

where � denotes the Khatri-Rao product defined in (3.9); note that
with vector inputs, this works the same as Kronecker product. Then we
have

T̂ =
k∑
j=1

λjb
⊗3
j .

We call this process of reshaping the tensor to a different order as
tensorization. Now for the 3rd order tensor T̂ , if the rank-1 components
bj ’s are linearly independent, we can use the tensor decomposition
algorithms in Section 3 to recover its rank-1 components bj ’s, and since
bj = aj � aj , the original rank-1 components aj is computed as the top
singular vector of the matricized version of bj . This whole approach is
provided in Algorithm 10.

If k ≤
(d+1

2
)
and the vectors aj ’s are in general position, then the vec-

tors bj ’s are going to be linearly independent. Recent work by Bhaskara

516 Overcomplete Tensor Decomposition

et al. (2014) shows that if aj ’s are perturbed by a random Gaussian
noise, the smallest singular value of matricized bj ’s are lower bounded
(where the lower bound depends polynomially on the magnitude of the
noise and the dimension). As a result this algorithm is robust to small
amount of noise.

In Algorithm 10, we used tensor power iteration as the core tensor
decomposition algorithm. It is worth mentioning that we can also
use other tensor decomposition algorithms. In particular, if we use
simultaneous diagonalization algorithm as proposed in Algorithm 7
instead of tensor power method, then it suffices to have a 5th order
input tensor T =

∑k
j=1 λja

⊗5
j . Again we can reshape the tensor as

T̂ =
k∑
j=1

λjbj ⊗ bj ⊗ aj .

Even though the third mode still only has d dimensions which is smaller
than rank k in the overcomplete regime, simultaneous diagonalization
only requires the rank to be less or equal to the dimension of the first
two modes, and thus, the algorithm can work.

The same idea can be also generalized to even higher order tensors.
In general, if vectors a⊗rj are linearly independent, then we can apply
simultaneous diagonalization algorithm to a (2r + 1)-th order tensor
and compute the unique tensor decomposition.

This algorithm can be applied to learning several latent variable
models, as long as we have access to higher order tensors. In some
applications such as pure topic models, this is fairly straightforward
as we only need to form the moment using the correlations of p words
instead of 3. In other applications this may require careful manipulations
of the moments. In both cases, working with higher order tensors can
potentially increase the sample complexity and running time of the
algorithm.

7.2 FOOBI Algorithm

In practice, working with high-order tensors is often too expensive in
terms of both sample complexity and running time. Therefore, it is
useful to design algorithms that can handle overcomplete tensors when

7.2. FOOBI Algorithm 517

the order of the tensor is low, e.g., 3rd or 4th order tensors. For 4th
order tensors, De Lathauwer et al. (2007) proposed an algorithm called
FOOBI (Fourth-Order-Only Blind Identification) that can work up to
rank k = Cd2 for some fixed constant C > 0. For simplicity, we again
describe the algorithm for symmetric tensors

T =
k∑
j=1

λja
⊗4
j ,

and we will keep the notation bj := aj � aj as we had in the previous
section. We will also assume λj > 0 and the components are real-valued.
All these requirements can be removed for this algorithm and interested
readers are encouraged to check the original paper. We provide the
FOOBI method in Algorithm 11. Intuitively, the algorithm has three
main parts

1. Finding the span of vectors {bj : j ∈ [k]}.

2. Finding the bj ’s.

3. Computing the aj ’s.

Step 1 is done using a SVD operation and step 3 is achieved the same as
what we discussed in the previous section for higher order tensors. The
magic happens in step 2 where the algorithm uses a quadratic operator
to detect rank-1 matrices. In the rest of this section, we describe these
steps in more details.

7.2.1 Finding Span of {bj}’s

In the first step, we try to find the span of the vectors bj ’s. This is very
simple as we can matricize the tensor as

M := T{1,2},{3,4} =
k∑
j=1

λjbjb
>
j ∈ Rd

2×d2
, (7.1)

where bj := aj � aj ∈ Rd2 . Therefore, we just need to compute the
column span (or row span) of M , and it would corresponds to the span
of vectors {bj}’s. In order to make the algorithm more robust to noise,
we use singular value decomposition to find the top singular values, and
drop all the singular values that are very close to 0.

518 Overcomplete Tensor Decomposition

Algorithm 11 FOOBI for Decomposing Overcomplete Tensors (De
Lathauwer et al., 2007)

input tensor T =
∑
j∈[k] λja

⊗4
j

output rank-1 components {(λj , aj)}’s
1: Reshape the tensor to a matrix

M =
k∑
j=1

λj(aj � aj)(aj � aj)> ∈ Rd
2×d2

.

2: Compute the SVD of M as M = UDU>.
3: Let L : Rd×d → Rd4 be a quadratic operator such that

L(A)(i1, i2, j1, j2) = det
(
Ai1,j1 Ai1,j2
Ai2,j1 Ai2,j2

)
.

Let L̃ : Rd2×d2 → Rd4 be the unique linear operator that satisfy
L̃(A⊗A) = L(A).

4: Construct matrix Z = L̃[(UD1/2)⊗ (UD1/2)].
5: Let y1, y2, . . . , yk ∈ Rk2 be the k least right singular vectors of Z.
6: Pick random vectors u, v ∈ span(y1, . . . , yk), reshape them as k × k

matrices U, V .
7: Use Simultaneous Diagonalization (see Algorithm 7 in Section 3.6)

to express U = QDUQ
> and V = QDVQ

>, where DU , DV are k×k
diagonal matrices and Q ∈ Rk×k is shared between U, V .

8: Let x1, . . . , xk ∈ Rk be the columns of Q, bj = UD1/2xj for all
j ∈ [k].

9: For j ∈ [k], reshape bj ∈ Rd2 to d× d matrix and let (δj , vj) be its
top singular value-vector pair.

10: return {(δ2
j , vj) : j ∈ [k]}.

7.2.2 Finding {bj}’s

In the second step of the algorithm, we can view the vectors bj ’s as
reshaped d × d matrices. For vector u ∈ Rd2 , the matricized version

7.2. FOOBI Algorithm 519

mat(u) ∈ Rd×d is defined as

mat(u)i,j = u(d(j − 1) + i), i, j ∈ [d],

which is formed by stacking the entries of u in the columns of the
matrix. Given the definition of bj ’s, we have mat(bj) = aja

>
j which are

rank-1 matrices. In addition, from the previous step, we know the linear
subspace spanned by these matrices. Using the key observation that
mat(bj) are all rank-1 matrices, we hope to recover bj ’s as follows.

Suppose the SVD of M in (7.1) is denoted by UDU>, where U ∈
Rd2×k be an orthonormal matrix that represents the span of the vectors
{bj}’s. Since we know

M = (UD1/2)(UD1/2)> =
k∑
j=1

(
√
λjbj)(

√
λjbj)>,

there exists an orthogonal matrix R such that the columns of UD1/2R

are equal to {
√
λjbj}’s. In order to find the vectors bj ’s, we need to

find the columns of this orthogonal matrix R denoted by xj such that
mat(UD1/2xj)’s are rank-1 matrices; recall the above discussion that
the matricized versions of bj ’s are rank-1 matrices.

Finding these xj directions is not an easy task. De Lathauwer et al.
(2007) show that it is possible to do this using a very interesting rank-1
detector.

7.2.3 Rank-1 Detector

For a matrix A ∈ Rd×d, we know A is rank at most 1 if and only if
determinants of all 2× 2 submatrices of A are equal to 0. In particular,
for a symmetric matrix A, we can define a mapping L(A) that maps A
to a D ≈ d4/8 dimensional space, where each entry in L(A) corresponds
to the value of the determinant of a unique 2× 2 submatrix of A. The
exact number of dimensions is D =

((d
2)+1

2
)
, because that is the number

of 4-tuples (i1, i2, j1, j2) where i1 < i2, j1 < j2 and (i1, i2) ≤ (j1, j2).

Definition 7.1 (rank-1 detector). Function L maps d × d symmetric
matrices to D =

((d
2)+1

2
)
dimensional space indexed by (i1, i2, j1, j2)

520 Overcomplete Tensor Decomposition

where i1 < i2, j1 < j2 and (i1, i2) ≤ (j1, j2), where

L(A)(i1, i2, j1, j2) = det
(
Ai1,j1 Ai1,j2
Ai2,j1 Ai2,j2

)
.

It is easy to prove that this rank-1 detector indeed works.

Claim 4. Symmetric matrix A ∈ Rd×d is of rank at most 1, if and only
if L(A) = 0.

The mapping L(A) is quadratic in the entries of A. Therefore, if we
apply L to the matrix V x, then L(V x) is also quadratic in the variable
x. Naïvely, L(V x) = 0 would give a set of quadratic equations, and
solving a system of quadratic equations is again hard in general. Luckily,
we have a very large number of equations – D ≈ d4/8. This allows us to
use a linearization approach: instead of treating L(V x) = 0 as a system
of quadratic equations over x, we will lift the variables to X = x�x and
view X as a

(d+1
2
)
dimensional vector. Now in our problem, L(UD1/2x)

is equal to a linear operator L̃ applied to [(UD1/2)⊗ (UD1/2)]X, i.e.,

L(UD1/2x) = L̃([(UD1/2)⊗ (UD1/2)]X).

Definition 7.2 (Linearized detector). Linearized rank-1 detector L̃ maps
a d2 × d2 matrix such that

L̃(A⊗A) = L(A).

More precisely, for two matrices A,B ∈ Rd×d we have

L̃(A⊗B)(i1, i2, j1, j2) = Ai1,j1Bi2,j2 −Ai1,j2Bi2,j1 ,

which is the determinant of the 2× 2 submatrix of A when A = B.

Since L̃ is a linear operator, we can represent it as a matrix; let
Z = L̃[(UD1/2) ⊗ (UD1/2)], and try to solve the system of linear
equations ZX = 0. Of course, in general doing this ignores the structure
in X (that it has the form of X = x� x), and will not work for general
quadratic equations. In this specific case, De Lathauwer et al. (2007)
were able to show that the only solutions of this equation are linear
combinations of the desired solution.

7.3. Third Order Tensors 521

Theorem 7.1 ((De Lathauwer et al., 2007)). Let aj ’s be in general posi-
tions and k ≤ Cd2 for some universal constant C > 0. Let x1, x2, . . . , xk
be k vectors such that Uxj = bj , and Xj = xj �xj for j ∈ [k]. Then the
solution of L̃[(UD1/2)⊗ (UD1/2)]X = 0 (the null space of Z) is exactly
equal to the span of Xj ’s.

7.2.4 Finding the Rank-1 Components

In this final step, we are given a subspace which is equal to the span of
{xj�xj}’s, and we are trying to find {xj}’s. At a first glance, this might
look exactly the same as the problem we were facing in the previous
step: we were given the span of {aj � aj} and trying to find {aj}’s.
Luckily these two problems are actually very different – in both cases we
are looking for k vectors, but previously we were given a span of d× d
matrices (and k � d) and now we have a span of k × k matrices. The
vectors aj ’s cannot be linearly independent, while the vectors xj ’s are
usually linearly independent. Now, to find {xj}’s, the key observation
is that every matrix in the span of {xj � xj}’s can be simultaneously
diagonalized, and the vectors xj ’s are the only way to do that. There-
fore the last step of the algorithm is very similar to the simultaneous
diagonalization algorithm for undercomplete tensor decomposition. In
Algorithm 11, for simplicity we just applied simultaneous diagonaliza-
tion on two random matrices U, V in the subspace found in the last
step (as we discussed in Section 3.6 this can be easily done by eigen-
decomposition of UV −1). To ensure numerical stability, the original
FOOBI algorithm requires a simultaneous diagonalization of all the yj ’s.
As a result, we find k vectors x1, . . . , xk such that UD1/2xj =

√
λjbj .

The rest of the algorithm is simply recovering aj ’s from bj ’s.

7.3 Third Order Tensors

Algorithms like FOOBI can work with tensors with order at least 4.
That leaves only third order tensors. We still don’t have any algorithms
for overcomplete third order tensors when the components are only
guaranteed to be in general position.

Third order tensor is very special and might be fundamentally more

522 Overcomplete Tensor Decomposition

difficult to decompose. As an example, it is very easy to construct an
explicit 4-th order tensor that has rank at least d2, because the rank
of the tensor is at least as large as its matricizations. However, for a
d× d× d third order tensor, all matricizations can have rank at most d;
note that even the most balanced matricizations have dimensions d2×d
or d× d2. It is still an open problem to construct an explicit third order
tensor whose rank is super-linear in dimension, and in fact doing so will
lead to circuit lower bounds that were open for decades (Raz, 2013).

Because of these difficulties, researchers have focused on the simpler
setting where the components {aj}’s are chosen from a random distri-
bution. Even in this simple case, the only provable algorithm relies on
complicated algorithms called Sum-of-Squares Hierarchies. We refer the
readers to the survey by Barak and Steurer (2014). In the rest of this
section, we give some intuitions on how to handle overcomplete third
order tensors without going into the details.

7.3.1 Lifting the Tensor

A key technique in handling third order tensor is to lift the tensor into
a higher order tensor. This can either be done explicitly, or implicitly
using Sum-of-Squares framework. Here we show a simple transformation
that lifts a third order tensor to a 4th order tensor. Again for simplicity,
we only work with symmetric tensors in this section.

Definition 7.3 (Lifted tensor). Given a tensor T ∈ Rd×d×d, we can
construct a lifted tensor M(T) ∈ Rd×d×d×d as

M(T)i1,i2,i3,i4 :=
d∑
i=1

Ti,i1,i2Ti,i3,i4 .

Note that for a rank-1 tensor T = a ⊗ a ⊗ a, the lifted tensor
M(T) = ‖a‖2a⊗4 is also rank-1. It is easier to interpret the lifted tensor
using the multilinear form, in particular, we have

M(T)(x, x, x, x) = ‖T (:, x, x)‖2.

As a result, if T has decomposition T =
∑k
j=1 aj ⊗ aj ⊗ aj , we can

represent M(T) as a low rank tensor plus noise. This is formulated as
follows.

7.3. Third Order Tensors 523

Theorem 7.2 (Ge and Ma, 2015). Suppose

T =
∑
j∈[k]

aj ⊗ aj ⊗ aj ,

then the lifted tensor can be represented as

M(T) =
∑
j∈[k]
‖aj‖2a⊗4

j +M ′,

where
M ′ =

∑
i 6=j∈[k]

〈ai, aj〉ai ⊗ ai ⊗ aj ⊗ aj .

Furthermore, suppose aj ’s are chosen according to Gaussian distribution
with expected square norm 1. Then the norm ‖M ′{1,3},{2,4}‖ is bounded
by o(1) when k ≤ d3/2/ poly log(d), where M ′{1,3},{2,4} ∈ Rd2×d2 denotes
the matricization of tensor M ′ such that the 1st and 3rd modes are
stacked along the rows, and the 2nd and 4th modes are stacked along
th columns of the matrix.

Intuitively, this theorem shows that after the lifting operation, we
get a 4th order rank-k tensor with noise M ′. The norm of M ′ is small
compared to the true components in the low rank decomposition. There-
fore, it is possible to find aj ’s as long as we can decompose 4th order
tensors under such kind and amount of noise. Ge and Ma (2015) gave
a quasi-polynomial time algorithm to do this. Later, Ma et al. (2016)
showed it is also possible to do this within polynomial time.

7.3.2 Robust 4th Order Tensor Decomposition

In order to solve the 4th order tensor decomposition problem, we might
want to use the FOOBI algorithm described earlier. However, the noise
term M ′ here has spectral norm o(1), and the FOOBI algorithm is not
known to be robust to such perturbations.

Using Sum-of-Squares techniques, Ma et al. (2016) gave an algorithm
that can decompose a 4th order tensor even under significant noise.

Theorem 7.3 (Ma et al., 2016). Let T ∈ Rd×d×d×d be a symmetric 4th
order tensor and a1, . . . , ak ∈ Rd be a set of vectors. Define perturbation

524 Overcomplete Tensor Decomposition

tensor E := T −
∑
j∈[k] a

⊗4
j , and define A as the matrix with columns

a⊗2
j . If the (matricized) perturbation norm ‖E{1,2},{3,4}‖ ≤ δ · σk(AA>)

for some δ > 0, then there is an algorithm that outputs a set of vectors
âj , and there is a permutation π : [k]→ [k] such that for every j ∈ [k],
we have

min{‖aj − âπ(j)‖, ‖aj + âπ(j)‖} ≤ O(δ‖A‖/σk(A))‖aj‖.

Note that we cannot directly combine this theorem with Theorem 7.1
to get a complete algorithm for decomposing overcomplete 3rd order
tensors. There are a few technical issues: 1. The norms of ‖aj‖’s are
not exactly 1, but they are very close to 1 by concentration; 2. we need
to reshape the tensor so that the matricization T{1,2},{3,4} has small
spectral norm; 3. when aj ’s are random, ‖A‖/σk(A) is usually

√
k/d

which is bigger than 1. The first two problems are easy to handle, while
the third problem requires more work.

Ma et al. (2016) also give a direct analysis for overcomplete 3rd
order tensors using Sum-of-Squares, and that analysis do not rely on
the explicit lifting.

7.4 Open Problems

Despite the algorithms we provided, decomposing an overcomplete
tensor is still a very difficult problem. The algorithms often require
access to high-order tensors, which is often expensive in both sample
complexity and running time. Sum-of-Squares algorithms can tolerate
more noise and therefore, work with fewer samples, but the running time
is prohibitive. Finding a provable overcomplete tensor decomposition
algorithm that is efficient in practice is still a major problem.

Although the current provable algorithms are quite complicated, in
practice algorithms like Alternating Least Squares or Power Method (see
Section 3) work surprisingly well even when the tensor is overcomplete.
For a random 3rd order tensor with dimension 100 and rank 1000,
Alternating Least Squares with random initialization almost always
converges to the right answer within 10 iterations. This is very surprising
and we do not yet know how to prove it works. When the components
are not randomly generated, people have observed Alternating Least

7.4. Open Problems 525

Squares can be sometimes slow (Comon, 2002). How to handle and
analyze these kind of tensors is also widely open.

Acknowledgements

The authors are grateful to anonymous reviewers for valuable comments
that have significantly improved the manuscript.

526

References

Acar, E., S. A. Çamtepe, M. S. Krishnamoorthy, and B. Yener. 2005.
“Modeling and multiway analysis of chatroom tensors”. In: Intelli-
gence and Security Informatics. Springer. 256–268.

Alain, G. and Y. Bengio. 2012. “What regularized auto-encoders learn
from the data generating distribution”. arXiv preprint arXiv:1211.4246.

Allen-Zhu, Z. and Y. Li. 2016a. “Doubly accelerated methods for
faster CCA and generalized eigendecomposition”. arXiv preprint
arXiv:1607.06017.

Allen-Zhu, Z. and Y. Li. 2016b. “First Efficient Convergence for Stream-
ing k-PCA: a Global, Gap-Free, and Near-Optimal Rate”. arXiv
preprint arXiv:1607.07837.

Anandkumar, A., R. Ge, D. Hsu, and S. M. Kakade. 2013. “A Tensor
Spectral Approach to Learning Mixed Membership Community
Models”. In: Conference on Learning Theory (COLT).

Anandkumar, A., R. Ge, D. Hsu, S. M. Kakade, and M. Telgarsky.
2014a. “Tensor Methods for Learning Latent Variable Models”. J.
of Machine Learning Research. 15: 2773–2832.

Anandkumar, A., Y. Deng, R. Ge, and H. Mobahi. 2017. “Homotopy
Analysis for Tensor PCA”. In: Conference on Learning Theory.

Anandkumar, A., D. P. Foster, D. Hsu, S. M. Kakade, and Y.-K. Liu.
2012a. “A Spectral Algorithm for Latent Dirichlet Allocation”. In:
Advances in Neural Information Processing Systems 25.

527

528 References

Anandkumar, A., R. Ge, and M. Janzamin. 2014b. “Sample Complexity
Analysis for Learning Overcomplete Latent Variable Models through
Tensor Methods”. arXiv preprint arXiv:1408.0553. Aug.

Anandkumar, A., D. Hsu, F. Huang, and S. M. Kakade. 2012b. “Learn-
ing Mixtures of Tree Graphical Models”. In: Advances in Neural
Information Processing Systems 25.

Anandkumar, A., D. Hsu, and S. M. Kakade. 2012c. “A method of
moments for mixture models and hidden Markov models”. In: COLT.

Appellof, C. J. and E. Davidson. 1981. “Strategies for analyzing data
from video fluorometric monitoring of liquid chromatographic efflu-
ents”. Analytical Chemistry. 53(13): 2053–2056.

Arora, S., R. Ge, T. Ma, and A. Risteski. 2017. “Provable learning of
Noisy-or Networks”. In: Proceedings of the forty-nineth annual ACM
symposium on Theory of computing.

Astrid, M. and S. Lee. 2017. “CP-decomposition with Tensor Power
Method for Convolutional Neural Networks Compression”. CoRR.
abs/1701.07148.

Austin, T. 2008. “On exchangeable random variables and the statistics
of large graphs and hypergraphs”. Probab. Survey. 5: 80–145.

Barak, B. and A. Moitra. 2016. “Noisy tensor completion via the sum-
of-squares hierarchy”. In: Conference on Learning Theory. 417–445.

Barak, B. and D. Steurer. 2014. “Sum-of-squares proofs and the quest
toward optimal algorithms”. arXiv preprint arXiv:1404.5236.

Baum, L. E. and T. Petrie. 1966. “Statistical inference for probabilistic
functions of finite state Markov chains”. The annals of mathematical
statistics. 37(6): 1554–1563.

Bhaskara, A., M. Charikar, A. Moitra, and A. Vijayaraghavan. 2014.
“Smoothed analysis of tensor decompositions”. In: Proceedings of the
forty-sixth annual ACM symposium on Theory of computing. ACM.
594–603.

Bjerhammar, A. 1951. Application of calculus of matrices to method of
least squares: with special reference to geodetic calculations. Elander.

Blei, D. M., A. Y. Ng, and M. I. Jordan. 2003. “Latent dirichlet alloca-
tion”. Journal of machine Learning research. 3(Jan): 993–1022.

Blum, A., J. Hopcroft, and R. Kannan. 2016. “Foundations of data
science”. Vorabversion eines Lehrbuchs.

References 529

Cardoso, J.-F. and P. Comon. 1996. “Independent Component Analysis,
A Survey Of Some Algebraic Methods”. In: IEEE International
Symposium on Circuits and Systems. 93–96.

Carroll, J. D. and J.-J. Chang. 1970. “Analysis of individual differences
in multidimensional scaling via an N-way generalization of “Eckart-
Young” decomposition”. Psychometrika. 35(3): 283–319.

Chang, J. T. 1996. “Full reconstruction of Markov models on evolution-
ary trees: Identifiability and consistency”. Mathematical Biosciences.
137: 51–73.

Comon, P. 1994. “Independent Component Analysis, a new concept?”
Signal Processing. 36(3): 287–314.

Comon, P. 2002. “Tensor decompositions”. Mathematics in Signal Pro-
cessing V : 1–24.

Comon, P. and C. Jutten. 2010. Handbook of Blind Source Separation:
Independent Component Analysis and Applications. Academic Press.
Elsevier.

Davis, C. and W. M. Kahan. 1970. “The rotation of eigenvectors by
a perturbation. III”. SIAM Journal on Numerical Analysis. 7(1):
1–46.

De Lathauwer, L., J. Castaing, and J.-F. Cardoso. 2007. “Fourth-order
cumulant-based blind identification of underdetermined mixtures”.
Signal Processing, IEEE Transactions on. 55(6): 2965–2973.

Debals, O. and L. De Lathauwer. 2017. “The concept of tensorization”.
Tech. rep. Technical Report 17–99, ESAT–STADIUS, KU Leuven,
Belgium.

Delfosse, N. and P. Loubaton. 1995. “Adaptive blind separation of
independent sources: a deflation approach”. Signal processing. 45(1):
59–83.

Eckart, C. and G. Young. 1936. “The approximation of one matrix by
another of lower rank”. Psychometrika. 1(3): 211–218.

Feige, U. 2002. “Relations between average case complexity and ap-
proximation complexity”. In: Proceedings of the thiry-fourth annual
ACM symposium on Theory of computing. ACM. 534–543.

Friedman, J. H. 1987. “Exploratory projection pursuit”. Journal of the
American statistical association. 82(397): 249–266.

530 References

Frieze, A., M. Jerrum, and R. Kannan. 1996. “Learning linear transfor-
mations”. In: Foundations of Computer Science, 1996. Proceedings.,
37th Annual Symposium on. IEEE. 359–368.

Ge, R., F. Huang, C. Jin, and Y. Yuan. 2015a. “Escaping from saddle
points—online stochastic gradient for tensor decomposition”. In:
Conference on Learning Theory. 797–842.

Ge, R., Q. Huang, and S. M. Kakade. 2015b. “Learning mixtures of
gaussians in high dimensions”. In: Proceedings of the forty-seventh
annual ACM symposium on Theory of computing. ACM. 761–770.

Ge, R., C. Jin, P. Netrapalli, A. Sidford, et al. 2016. “Efficient al-
gorithms for large-scale generalized eigenvector computation and
canonical correlation analysis”. In: International Conference on
Machine Learning. 2741–2750.

Ge, R. and T. Ma. 2015. “Decomposing overcomplete 3rd order tensors
using sum-of-squares algorithms”. In: RANDOM.

Golub, G. H. and C. F. van Loan. 1996. Matrix Computations. Johns
Hopkins University Press.

Golub, G. H. and C. F. Van Loan. 1990. “Matrix computations”.
Grigoriev, D. 2001. “Linear lower bound on degrees of Positivstellensatz

calculus proofs for the parity”. Theoretical Computer Science. 259(1-
2): 613–622.

Harshman, R. A. 1970. “Foundations of the PARAFAC procedure: mod-
els and conditions for an" explanatory" multimodal factor analysis”.

Harshman, R. A. and M. E. Lundy. 1994. “PARAFAC: Parallel factor
analysis”. Computational Statistics & Data Analysis. 18(1): 39–72.

Hillar, C. J. and L.-H. Lim. 2013. “Most tensor problems are NP-hard”.
Journal of the ACM (JACM). 60(6): 45.

Hitchcock, F. L. 1927. “The expression of a tensor or a polyadic as
a sum of products”. Journal of Mathematics and Physics. 6(1-4):
164–189.

Hofmann, T. 1999. “Probabilistic latent semantic analysis”. In: Pro-
ceedings of the Fifteenth conference on Uncertainty in artificial
intelligence. Morgan Kaufmann Publishers Inc. 289–296.

Hopkins, S. B., J. Shi, and D. Steurer. 2015. “Tensor principal component
analysis via sum-of-square proofs”. In: Conference on Learning
Theory. 956–1006.

References 531

Horn, R. A. and C. R. Johnson. 2012. Matrix analysis. Cambridge
university press.

Hotelling, H. 1933. “Analysis of a complex of statistical variables into
principal components.” Journal of educational psychology. 24(6):
417.

Hotelling, H. 1992. “Relations between two sets of variates”. In: Break-
throughs in statistics. Springer. 162–190.

Hsu, D. and S. M. Kakade. 2013. “Learning mixtures of spherical Gaus-
sians: moment methods and spectral decompositions”. In: Fourth
Innovations in Theoretical Computer Science.

Hsu, D., S. M. Kakade, and P. Liang. 2012. “Identifiability and unmixing
of latent parse trees”. In: Advances in Neural Information Processing
Systems 25.

Hunter, J. D. 2007. “Matplotlib: A 2D Graphics Environment”. Com-
puting in Science Engineering. 9(3): 90–95.

Hyvärinen, A. and E. Oja. 2000. “Independent component analysis:
algorithms and applications”. Neural Networks. 13(4–5): 411–430.

Hyvärinen, A. 2005. “Estimation of non-normalized statistical models
by score matching”. In: Journal of Machine Learning Research. 695–
709.

Janzamin, M., H. Sedghi, and A. Anandkumar. 2014. “Score Function
Features for Discriminative Learning: Matrix and Tensor Frame-
works”. arXiv preprint arXiv:1412.2863. Dec.

Janzamin, M., H. Sedghi, and A. Anandkumar. 2015. “Beating the
perils of non-convexity: Guaranteed training of neural networks
using tensor methods”. arXiv preprint arXiv:1506.08473.

Johnson, R. and T. Zhang. 2013. “Accelerating stochastic gradient
descent using predictive variance reduction”. In: Advances in neural
information processing systems. 315–323.

Jones, E., T. Oliphant, P. Peterson, et al. 2001. “SciPy: Open source
scientific tools for Python”. [Online; accessed 2016-10-21]. url:
http://www.scipy.org/.

Kim, Y., E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin. 2016. “Com-
pression of Deep Convolutional Neural Networks for Fast and Low
Power Mobile Applications”. ICLR. May.

http://www.scipy.org/

532 References

Koivunen, A. and A. Kostinski. 1999. “The feasibility of data whiten-
ing to improve performance of weather radar”. Journal of Applied
Meteorology. 38(6): 741–749.

Kolbeinsson, A., J. Kossaifi, Y. Panagakis, A. Anandkumar, I. Tzoulaki,
and P. Matthews. 2019. “Stochastically Rank-Regularized Tensor
Regression Networks”. CoRR. abs/1902.10758.

Kolda, T. G. and J. R. Mayo. 2011. “Shifted Power Method for Com-
puting Tensor Eigenpairs”. SIAM Journal on Matrix Analysis and
Applications. 32(4): 1095–1124.

Kolda, T. G. and B. W. Bader. 2009. “Tensor decompositions and
applications”. SIAM review. 51(3): 455–500.

Kossaifi, J., A. Bulat, G. Tzimiropoulos, and M. Pantic. 2019a. “T-Net:
Parametrizing Fully Convolutional Nets with a Single High-Order
Tensor”. In: CVPR. 7822–7831.

Kossaifi, J., A. Khanna, Z. Lipton, T. Furlanello, and A. Anandkumar.
2017. “Tensor contraction layers for parsimonious deep nets”. In:
Computer Vision and Pattern Recognition Workshops (CVPRW),
2017 IEEE Conference on. IEEE. 1940–1946.

Kossaifi, J., Z. C. Lipton, A. Khanna, T. Furlanello, and A. Anandkumar.
2018. “Tensor Regression Networks”. CoRR. abs/1707.08308.

Kossaifi, J., Y. Panagakis, A. Anandkumar, and M. Pantic. 2019b.
“TensorLy: Tensor Learning in Python”. Journal of Machine Learning
Research. 20(26): 1–6. url: http : / / jmlr . org /papers / v20 / 18 -
277.html.

Kruskal, J. 1976. “More factors than subjects, tests and treatments: an
indeterminacy theorem for canonical decomposition and individual
differences scaling”. Psychometrika. 41(3): 281–293.

Kruskal, J. 1977. “Three-way arrays: Rank and uniqueness of trilin-
ear decompositions, with application to arithmetic complexity and
statistics”. Linear algebra and its applications. 18(2): 95–138.

Latała, R. 2005. “Some estimates of norms of random matrices”. Pro-
ceedings of the American Mathematical Society. 133(5): 1273–1282.

Lathauwer, L. D., B. D. Moor, and J. Vandewalle. 2000. “On the Best
rank-1 and Rank-(R1, R2, ..., RN) Approximation and Applications
of Higher-Order Tensors”. SIAM J. Matrix Anal. Appl. 21(4): 1324–
1342.

http://jmlr.org/papers/v20/18-277.html
http://jmlr.org/papers/v20/18-277.html

References 533

Lebedev, V., Y. Ganin, M. Rakhuba, I. V. Oseledets, and V. S. Lem-
pitsky. 2015. “Speeding-up Convolutional Neural Networks Using
Fine-tuned CP-Decomposition”. In: ICLR.

Leurgans, S., R. Ross, and R. Abel. 1993. “A decomposition for three-
way arrays”. SIAM Journal on Matrix Analysis and Applications.
14(4): 1064–1083.

Lim, L.-H. 2005. “Singular values and eigenvalues of tensors: a varia-
tional approach”. Proceedings of the IEEE International Workshop
on Computational Advances in Multi-Sensor Adaptive Processing
(CAMSAP ’05). 1: 129–132.

Ma, T., J. Shi, and D. Steurer. 2016. “Polynomial-time tensor decompo-
sitions with sum-of-squares”. In: Foundations of Computer Science
(FOCS), 2016 IEEE 57th Annual Symposium on. IEEE. 438–446.

MacQueen, J. B. 1967. “Some Methods for Classification and Analysis
of Multivariate Observations”. In: Proceedings of the fifth Berke-
ley Symposium on Mathematical Statistics and Probability. Vol. 1.
University of California Press. 281–297.

Mocks, J. 1988. “Topographic components model for event-related
potentials and some biophysical considerations”. IEEE transactions
on biomedical engineering. 6(35): 482–484.

Moore, E. H. 1920. “On the reciprocal of the general algebraic matrix”.
Bull. Am. Math. Soc. 26: 394–395.

Mossel, E. and S. Roch. 2006. “Learning Nonsingular Phylogenies and
Hidden Markov Models”. Annals of Applied Probability. 16(2): 583–
614.

Nguyen, N. H., P. Drineas, and T. D. Tran. 2010. “Tensor sparsification
via a bound on the spectral norm of random tensors”. arXiv preprint
arXiv:1005.4732.

Nocedal, J. and S. J. Wright. 1999. Numerical Optimization. Springer.
Novikov, A., D. Podoprikhin, A. Osokin, and D. Vetrov. 2015. “Ten-

sorizing Neural Networks”. In: Proceedings of the 28th International
Conference on Neural Information Processing Systems. NIPS’15.
Montreal, Canada. 442–450.

Papadimitriou, C. H., P. Raghavan, H. Tamaki, and S. Vempala. 2000.
“Latent semantic indexing: A probabilistic analysis”. Journal of
Computer and System Sciences. 61(2): 217–235.

534 References

Papalexakis, E. E., C. Faloutsos, and N. D. Sidiropoulos. 2017. “Ten-
sors for data mining and data fusion: Models, applications, and
scalable algorithms”. ACM Transactions on Intelligent Systems and
Technology (TIST). 8(2): 16.

Paszke, A., S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. 2017. “Automatic
Differentiation in PyTorch”. In: NIPS Autodiff Workshop.

Pearson, K. 1894. “Contributions to the mathematical theory of evolu-
tion”. Philosophical Transactions of the Royal Society of London. A.
185: 71–110.

Pearson, K. 1901. “LIII. On lines and planes of closest fit to systems of
points in space”. The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science. 2(11): 559–572.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J.
Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. “Scikit-learn: Machine Learning in Python”.
Journal of Machine Learning Research. 12: 2825–2830.

Penrose, R. 1955. “A generalized inverse for matrices”. In: Mathematical
proceedings of the Cambridge philosophical society. Vol. 51. No. 3.
Cambridge University Press. 406–413.

Potechin, A. and D. Steurer. 2017. “Exact tensor completion with
sum-of-squares”. arXiv preprint arXiv:1702.06237.

Qi, L. 2005. “Eigenvalues of a real supersymmetric tensor”. Journal of
Symbolic Computation. 40(6): 1302–1324.

Rabanser, S., O. Shchur, and S. Günnemann. 2017. “Introduction to
tensor decompositions and their applications in machine learning”.
arXiv preprint arXiv:1711.10781.

Raz, R. 2013. “Tensor-rank and lower bounds for arithmetic formulas”.
Journal of the ACM (JACM). 60(6): 40.

Richard, E. and A. Montanari. 2014. “A statistical model for tensor
PCA”. In: Advances in Neural Information Processing Systems.
2897–2905.

Schoenebeck, G. 2008. “Linear level Lasserre lower bounds for certain
k-CSPs”. In: Foundations of Computer Science, 2008. FOCS’08.
IEEE 49th Annual IEEE Symposium on. IEEE. 593–602.

References 535

Sedghi, H., M. Janzamin, and A. Anandkumar. 2016. “Provable tensor
methods for learning mixtures of generalized linear models”. In:
Artificial Intelligence and Statistics. 1223–1231.

Shalev-Shwartz, S. and T. Zhang. 2013. “Stochastic dual coordinate as-
cent methods for regularized loss minimization”. Journal of Machine
Learning Research. 14(Feb): 567–599.

Shashua, A. and A. Levin. 2001. “Linear image coding for regression
and classification using the tensor-rank principle”. In: Computer
Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of
the 2001 IEEE Computer Society Conference on. Vol. 1. IEEE. I–42.

Shwe, M. A., B. Middleton, D. Heckerman, M. Henrion, E. Horvitz,
H. Lehmann, and G. Cooper. 1991. “Probabilistic diagnosis using a
reformulation of the INTERNIST-1/QMR knowledge base”.Methods
of information in Medicine. 30(4): 241–255.

Sidiropoulos, N. D. and R. Bro. 2000. “On the uniqueness of multilinear
decomposition of N-way arrays”. Journal of Chemometrics. 14(3):
229–239.

Sidiropoulos, N. D., R. Bro, and G. B. Giannakis. 2000. “Parallel
factor analysis in sensor array processing”. Signal Processing, IEEE
Transactions on. 48(8): 2377–2388.

Sidiropoulos, N. D., L. De Lathauwer, X. Fu, K. Huang, E. E. Pa-
palexakis, and C. Faloutsos. 2017. “Tensor decomposition for signal
processing and machine learning”. IEEE Transactions on Signal
Processing. 65(13): 3551–3582.

Spearman, C. 1904. “" General Intelligence," Objectively Determined
and Measured”. The American Journal of Psychology. 15(2): 201–
292.

Sriperumbudur, B., K. Fukumizu, R. Kumar, A. Gretton, and A. Hyväri-
nen. 2013. “Density estimation in infinite dimensional exponential
families”. arXiv preprint arXiv:1312.3516.

stewart, G. and J.-G. Sun. 1990. Matrix perturbation theory. Academic
Press.

Swersky, K., D. Buchman, N. D. Freitas, B. M. Marlin, et al. 2011.
“On autoencoders and score matching for energy based models”.
In: Proceedings of the 28th International Conference on Machine
Learning (ICML-11). 1201–1208.

536 References

Tai, C., T. Xiao, X. Wang, and W. E. 2016. “Convolutional neural
networks with low-rank regularization”. ICLR.

Tropp, J. A. 2012. “User-friendly tail bounds for sums of random
matrices”. Foundations of computational mathematics. 12(4): 389–
434.

Wainwright, M. and M. Jordan. 2008. “Graphical models, exponential
families, and variational inference”. Foundations and Trends R© in
Machine Learning. 1(1-2): 1–305.

Walt, S. van der, S. C. Colbert, and G. Varoquaux. 2011. “The NumPy
Array: A Structure for Efficient Numerical Computation”. Comput-
ing in Science Engineering. 13(2): 22–30.

Wang, W., J. Wang, and N. Srebro. 2016. “Globally convergent stochas-
tic optimization for canonical correlation analysis”. Advances in
Neural Information Processing Systems.

Wedin, P. 1972. “Perturbation bounds in connection with singular value
decomposition”. BIT Numerical Mathematics. 12(1): 99–111.

Weyl, H. 1912. “Das asymptotische Verteilungsgesetz der Eigenwerte
linearer partieller Differentialgleichungen (mit einer Anwendung
auf die Theorie der Hohlraumstrahlung)”. Mathematische Annalen.
71(4): 441–479.

Zhang, T. and G. Golub. 2001. “Rank-one approximation to high order
tensors”. SIAM Journal on Matrix Analysis and Applications. 23:
534–550.

	Introduction
	Method of Moments and Moment Tensors
	Warm-up: Learning a Simple Model with Tensors
	What's Next?

	Matrix Decomposition
	Low Rank Matrix Decomposition
	Low Rank Matrix Approximation and SVD
	Principal Component Analysis
	Whitening Transformation
	Canonical Correlation Analysis

	Tensor Decomposition Algorithms
	Transition from Matrices to Tensors
	Tensor Preliminaries and Notations
	Uniqueness of CP decomposition
	Orthogonal Tensor Decomposition
	Tensor Power Iteration
	Simultaneous Diagonalization
	Alternating Least Squares

	Applications of Tensor Methods
	Pure Topic Model Revisited
	Beyond Raw Moments
	Multi-view Models
	Nonlinear Model: Noisy-Or Networks
	Applications in Supervised Learning
	Other Models

	Practical Implementations
	Programming Language and Framework
	Tensors as NumPy Arrays
	Basic Tensor Operations and Decomposition
	Example: Image Compression via Tensor Decomposition
	Going Further with TensorLy
	Scaling up with PyTorch

	Efficiency of Tensor Decomposition
	Running Time and Memory Usage
	Sample Complexity

	Overcomplete Tensor Decomposition
	Higher-order Tensors via Tensorization
	FOOBI Algorithm
	Third Order Tensors
	Open Problems

	Acknowledgements
	References

