ADVANCES IN TRINITY OF AI: DATA, ALGORITHMS & COMPUTE

Anima Anandkumar
Bren Professor at Caltech
Director of ML Research at NVIDIA
TRINITY FUELING ARTIFICIAL INTELLIGENCE

ALGORITHMS
• OPTIMIZATION
• SCALABILITY
• MULTI-DIMENSIONALITY

INFRASTRUCTURE
FULL STACK FOR ML
• APPLICATION SERVICES
• ML PLATFORM
• GPUS

DATA
• COLLECTION
• AGGREGATION
• AUGMENTATION
DATA

- **COLLECTION:** ACTIVE LEARNING, PARTIAL LABELS..
- **AGGREGATION:** CROWDSOURCING MODELS..
- **AUGMENTATION:** GENERATIVE MODELS, SYMBOLIC EXPRESSIONS..
ACTIVE LEARNING

Goal
• Reach SOTA with a smaller dataset
• Active learning analyzed in theory
• In practice, only small classical models

Can it work at scale with deep learning?
In 1917, Einstein applied the general theory of relativity to model the large-scale structure of the universe. He was visiting the United States when Adolf Hitler came to power in 1933 and did not go back to Germany, where he had been a professor at the Berlin Academy of Sciences. He settled in the U.S., becoming an American citizen in 1940. On the eve of World War II, he endorsed a letter to President Franklin D. Roosevelt alerting him to the potential development of "extremely powerful bombs of a new type" and recommending that the U.S. begin similar research. This eventually led to what would become the Manhattan Project. Einstein supported defending the Allied forces, but largely denounced using the new discovery of nuclear fission as a weapon. Later, with the British philosopher Bertrand Russell, Einstein signed the Russell–Einstein Manifesto, which highlighted the danger of nuclear weapons. Einstein was affiliated with the Institute for Advanced Study in Princeton, New Jersey, until his death in 1955.
RESULTS

NER task on largest open benchmark (Onto-notes)

Test F1 score vs. % of labeled words

Active learning heuristics:

- Least confidence (LC)
- Max. normalized log probability (MNLP)

- Deep active learning matches:
 - SOTA with just 25% data on English, 30% on Chinese.
 - Best shallow model (on full data) with 12% data on English, 17% on Chinese.
TAKE-AWAY

• Uncertainty sampling works. Normalizing for length helps under low data.

• With active learning,
 \textbf{deep beats shallow} even in low data regime.

• With active learning, \textbf{SOTA achieved} with far fewer samples.
Hierarchical class labeling: Labor proportional to # of binary questions asked

Actively pick informative questions?
RESULTS ON TINY IMAGENET (100K SAMPLES)

- Yield **8%** higher accuracy at **30%** questions (w.r.t. Uniform)
- Obtain full annotation with **40%** less binary questions
TWO TAKE-AWAYS

• Don’t annotate from scratch
 • Select questions actively based on the learned model

• Don’t sleep on partial labels
 • Re-train model from partial labels
CROWDSOURCING: AGGREGATION OF CROWD ANNOTATIONS

Majority rule
- Simple and common.
- Wasteful: ignores annotator quality of different workers.

Annotator-quality models
- Can improve accuracy.
- Hard: needs to be estimated without ground-truth.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Training data for supervised learning

<table>
<thead>
<tr>
<th>Majority Voting</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Majority vote: Yes
- Voting: No
PROPOSED CROWDSOURCING ALGORITHM

Repeat

Posterior of ground-truth labels given annotator quality model

Noisy crowdsourced annotations

Use trained model to infer ground-truth labels

Training with weighted loss. Use posterior as weights

MLE: update Annotator quality using inferred labels from model
LABELING ONCE IS OPTIMAL: BOTH IN THEORY AND PRACTICE

Theorem: Under fixed budget, generalization error minimized with **single annotation** per sample.

Assumptions:
- Best predictor is accurate enough (under no label noise).
- Simplified case: All workers have same quality.
- Prob. of being correct > 83%
DATA AUGMENTATION 1: GENERATIVE MODELING

GAN

Merits
- Captures statistics of natural images
- Learnable

Peril
- Feedback is real vs. fake: different from prediction.
- Introduces artifacts
PREDICTIVE VS GENERATIVE MODELS

One model to do both?

- SOTA prediction from CNN models.
- What class of $p(x \mid y)$ yield CNN models for $p(y \mid x)$?
NEURAL DEEP RENDERING MODEL (NRM)

Design joint priors for latent variables based on reverse-engineering CNN predictive architectures
NEURAL RENDERING MODEL (NRM)

CNN: Inference

NRM: Generation

0.5 dog
0.2 cat
0.1 horse
...

1.0 dog

rendered image
upsampled template
masked template
class template

Choose render or not
Upsample, select location
Render

image
unpooled feature map
pooled feature map
rectified feature map

Max
ReLU

0.5 dog
0.2 cat
0.1 horse
...

1.0 dog
MAX-MIN CROSS-ENTROPY ➔ MAX-MIN NETWORKS

Cross-Entropy Loss for Training the CNNs with Labeled Data

\[
\min_{\theta \in \Theta} H_{p,q}(y|x, z^{\text{max}}) \geq \min_{(z_i)_{i=1}^n, \theta} \frac{1}{n} \sum_{i=1}^n - \log p(y_i|x_i, z_i; \theta)
\]

Max-Min Loss for Training the CNNs with Labeled Data

\[
\alpha \max_{\theta \in \Theta} H_{p,q}(y|x, z^{\text{max}}) + \alpha \min_{\theta \in \Theta} H_{p,q}(y|x, z^{\text{min}})
\]

- Max cross-entropy maximizes the posteriors of correct labels.
- Min cross-entropy minimizes the posteriors of incorrect labels.
- Co-learning: Max and Min networks try to learn from each other
STATISTICAL GUARANTEES FOR THE NRM

Bound on the generalization error

\[\text{Risk} \leq \frac{\text{Number of active rendering paths}}{n^{1/2}} \]

- Rendering path normalization:
- new form of regularization

Training loss in the CNNs equivalent to likelihood in NRM

Max-Min NRM with RPN achieves SOTA on benchmarks
DATA AUGMENTATION 2: SYMBOLIC EXPRESSIONS

Goal: Learn a domain of functions (sin, cos, log, add...)

• Training on numerical input-output does not generalize.

Data Augmentation with Symbolic Expressions

• Efficiently encode relationships between functions.

Solution:

• Design networks to use both: *symbolic + numerical*
ARCHITECTURE : TREE LSTM

- Symbolic expression trees. Function evaluation tree.
- Decimal trees: encode numbers with decimal representation (numerical).
- Can encode any expression, function evaluation and number.

\[
\sin^2(\theta) + \cos^2(\theta) = 1
\]
\[
\sin(-2.5) = -0.6
\]

Decimal Tree for 2.5
RESULTS

• Vastly Improved numerical evaluation: 90% over function-fitting baseline.

• Generalization to verifying symbolic equations of higher depth

<table>
<thead>
<tr>
<th>LSTM: Symbolic</th>
<th>TreeLSTM: Symbolic</th>
<th>TreeLSTM: symbolic + numeric</th>
</tr>
</thead>
<tbody>
<tr>
<td>76.40 %</td>
<td>93.27 %</td>
<td>96.17 %</td>
</tr>
</tbody>
</table>

• Combining symbolic + numerical data helps in better generalization for both tasks: symbolic and numerical evaluation.
ALGORITHMS

• OPTIMIZATION : ANALYSIS OF CONVERGENCE
• SCALABILITY : GRADIENT QUANTIZATION
• MULTI-DIMENSIONALITY : TENSOR ALGEBRA
DISTRIBUTED TRAINING INVOLVES COMPUTATION & COMMUNICATION

Parameter server

GPU 1
With 1/2 data

GPU 2
With 1/2 data
DISTRIBUTED TRAINING INVOLVES COMPUTATION & COMMUNICATION

Parameter server

Compress?

GPU 1
With 1/2 data

Compress?

Compress?

GPU 2
With 1/2 data

Compress?
DISTRIBUTED TRAINING BY MAJORITY VOTE

Parameter server

GPU 1
GPU 2
GPU 3

sign(g)

sign(g)

sign(g)

Parameter server

sign [sum(sign(g))]

GPU 1
GPU 2
GPU 3
SIGNSGD PROVIDES “FREE LUNCH”

P3.2x machines on AWS, Resnet50 on imagenet

Throughput gain with only tiny accuracy loss
SIGNSGD ACROSS DOMAINS AND ARCHITECTURES

Huge throughput gain!
TAKE-AWAYS FOR SIGN-SGD

• Convergence even under biased gradients and noise.

• **Faster than SGD** in theory and in practice.

• For distributed training, similar variance reduction as SGD.

• In practice, similar accuracy but with *far less communication*.
TENSORS FOR LEARNING IN MANY DIMENSIONS

Scalar Vector Matrix Tensor

Modern data is inherently multi-dimensional.
TENSORS FOR MULTI-DIMENSIONAL DATA AND HIGHER ORDER MOMENTS

Images: 3 dimensions

Videos: 4 dimensions

Pairwise correlations

Triplet correlations
Tensor Contraction

Extends the notion of matrix product

Matrix product

\[Mv = \sum_j v_j M_j \]

Tensor Contraction

\[T(u, v, \cdot) = \sum_{i,j} u_i v_j T_{i,j,\cdot} \]
DEEP TENSORIZED NETWORKS
SPACE SAVING IN DEEP TENSORIZED NETWORKS

Accuracy (in %)

- Top-1 accuracy
- Top-5 accuracy

Space savings (in %)
Tensors for Long-Term Forecasting

Challenges:
- Long-term dependencies
- High-order correlations
- Error propagation
TENSOR LSTM FOR LONG-TERM FORECASTING

Traffic dataset

Climate dataset

![Graph of RMSE vs Hour for Traffic dataset]

- LSTM
- MLSTM
- TLSTM

![Graph of RMSE vs Day for Climate dataset]

- LSTM
- MLSTM
- TLSTM
TENSORLY: HIGH-LEVEL API FOR TENSOR ALGEBRA

- Tensor decomposition
- Tensor regression
- Tensors + Deep

Basic tensor operations

Unified backend

- Python programming
- User-friendly API
- Multiple backends: flexible + scalable
- Example notebooks in repository
CAST: BRINGING ROBOTICS AND AI TOGETHER
FIRST SET OF RESULTS: LEARNING TO LAND

3D Take-off (PD)
3D Take-off (Neural)
CONCLUSION

AI needs integration of data, algorithms and infrastructure

• DATA
 • Collection: Active learning and partial feedback
 • Aggregation: Crowdsourcing models
 • Augmentation: Graphics rendering + GANs, Symbolic expressions

• ALGORITHMS
 • Convergence: SignSGD has good rates in theory and practice
 • Scalability: SignSGD has same variance reduction as SGD for multi-machine
 • Multi-dimensionality: Tensor algebra for neural networks and probabilistic models.

• INFRASTRUCTURE:
 • Frameworks: Tensorly is high-level API for deep tensorized networks.
COLLABORATORS (LIMITED LIST)
Thank you