Introduction to Probability

Anima Anandkumar
Electrical Engineering and Computer Engineering
University of California, Irvine, CA 92697
a.anandkumar@uci.edu

Copyright (c)2013

Concepts

- Probability space
- Conditional probability and statistical independence.
- Random variables, distributions and densities.
- Expectations and conditional expectations.
- Real and complex Gaussian variables and vectors.
- Inequalities
- Convergence, LLN and CLT.

Definition:

A probability space is defined by $(\Omega, \mathcal{F}, \operatorname{Pr})$
$1 . \Omega$ is the sample space that contains the set of outcomes.
2. \mathcal{F} is a σ-field of subsets of Ω (events):
(i) $\Omega \in \mathcal{F}$.
(ii) If $\varepsilon \in \mathcal{F}$, then $\varepsilon^{c} \in \mathcal{F}$.
(iii) If $\varepsilon_{i} \in \mathcal{F}$, then $\bigcup_{i=1}^{\infty} \varepsilon_{i} \in \mathcal{F}$.
3. Pr is a function on \mathcal{F} satisfying
(i) $0 \leq \operatorname{Pr}(\varepsilon) \leq 1$.
(ii) $P(\Omega)=1$.
(iii) If $\varepsilon_{1}, \varepsilon_{2}, \cdots$ are disjoint, then

$$
\operatorname{Pr}\left(\bigcup_{i=1}^{\infty} \varepsilon_{i}\right)=\sum \operatorname{Pr}\left(\varepsilon_{i}\right)
$$

Why Do We Need Restrictions on Events?
Let $\Omega \triangleq\left\{(x, y) \mid x^{2}+y^{2}=1\right\}$. There exists ${ }^{\dagger}$ a set $\varepsilon \in \Omega$ such that

1. for any rational $\phi, \theta \in[0,2 \pi)$ and $\phi \neq \theta$, the rotation of \mathcal{E} by θ and ϕ are disjoint, i.e., $\mathcal{E}(\theta) \cap \mathcal{E}(\phi)=\emptyset$.
2. The union of all ε rotated by rational θ is Ω. If $\operatorname{Pr}(\mathcal{E})=x$, then

$$
1=\operatorname{Pr}(\Omega)=\operatorname{Pr}(\bigcup \mathcal{E}(\theta))=\sum \operatorname{Pr}(\mathcal{E}(\theta))=\sum x
$$

[^0]
The Probability Space: Examples

Sample Space Ω

- Picking the "lucky" person out of a class of 30 to receive an $A: \Omega_{1}=\{1,2, \cdots, 29,30\}$.
- Taking the qualify exam until pass:
$\Omega_{2}=\{P, F P, F F P, F F F P, \cdots$,$\} .$
- The time you wake up: $\Omega_{3}=\{(00: 00,24: 00]\}$
- Throwing a dart to a unit disk:

$$
\Omega_{4}=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\} .
$$

Events

Consider Ω_{1}

ε_{0} : Someone is lucky: $\varepsilon_{0}=\Omega_{1}$.
ε_{1} : the "lucky" person has an even ID:

$$
\mathcal{E}_{1}=\{2,4,6, \cdots, 30\} .
$$

ε_{2} The "lucky" person has an even number or a number between 10 and $20 . \varepsilon_{2}=\varepsilon_{1} \bigcup\{11,13, \cdots, 19\}$.
ε_{4} The "lucky" person has an odd number less than 10. $\varepsilon_{4}=\varepsilon_{1}^{c} \cap\{1, \cdots, 10\}$.

- $\operatorname{Pr}\left(\mathcal{A}^{c}\right)=1-\operatorname{Pr}(\mathcal{A}), \quad \operatorname{Pr}(\emptyset)=0$.
- If $\mathcal{A} \subset \mathcal{B}$, then $\operatorname{Pr}(\mathcal{B})=\operatorname{Pr}(\mathcal{A})+\operatorname{Pr}(\mathcal{B}-\mathcal{A}) \geq \operatorname{Pr}(\mathcal{A})$.
- Union bound (Boole's inequality):
$\operatorname{Pr}\left(\bigcup_{i=1}^{\infty} \mathcal{A}_{i}\right) \leq \sum_{i=1}^{\infty} \operatorname{Pr}\left(\mathcal{A}_{i}\right)$

- Inclusion-exclusion:

$$
\begin{aligned}
\operatorname{Pr}\left(\mathcal{A}_{1} \bigcup_{n} \mathcal{A}_{2}\right)= & \operatorname{Pr}\left(\mathcal{A}_{1}\right)+\operatorname{Pr}\left(\mathcal{A}_{2}\right)-\operatorname{Pr}\left(\mathcal{A}_{1} \bigcap \mathcal{A}_{2}\right) \\
\operatorname{Pr}\left(\bigcup_{i=1}^{n} \mathcal{A}_{i}\right)= & \sum_{i=1}^{n} \operatorname{Pr}\left(\mathcal{A}_{i}\right)-\sum_{i<j} \operatorname{Pr}\left(\mathcal{A}_{i} \bigcap \mathcal{A}_{j}\right) \\
& +\sum_{i<j<k} \operatorname{Pr}\left(\mathcal{A}_{i} \bigcap \mathcal{A}_{j} \bigcap \mathcal{A}_{k}\right)-\cdots \\
& +(-1)^{k+1} \sum_{i_{1}<i_{2}<\cdots<i_{k}} \operatorname{Pr}\left(\bigcap_{r=1}^{k} \mathcal{A}_{i_{r}}\right)+\cdots
\end{aligned}
$$

- Bonferroni's inequality: $\operatorname{Pr}\left(\bigcap_{i=1}^{n} \mathcal{A}_{i}\right) \geq 1-\sum_{i=1}^{n} \operatorname{Pr}\left(\mathcal{A}_{i}^{c}\right)$

Monotone Convergence

If ε_{i} increases, i.e., $\varepsilon_{1} \subseteq \varepsilon_{2} \subseteq \cdots$, and let $\varepsilon \triangleq \bigcup_{i=1}^{\infty} \varepsilon_{i}$. Then

$$
\operatorname{Pr}(\mathcal{E})=\lim _{i \rightarrow \infty} \operatorname{Pr}\left(\mathcal{E}_{i}\right)
$$

If ε_{i} decreases, i.e., $\varepsilon_{1} \supseteq \varepsilon_{2} \supseteq \cdots$, and let $\mathcal{\varepsilon}=\bigcap_{i=1}^{\infty} \varepsilon_{i}$. Then

$$
\operatorname{Pr}(\mathcal{E})=\lim _{i \rightarrow \infty} \operatorname{Pr}\left(\mathcal{E}_{i}\right)
$$

Limits of Sequences

Let $\left\{\varepsilon_{n}\right\}$ be an arbitrary sequence of events. Define limits

$$
\mathcal{E}^{*}=\limsup _{i \rightarrow \infty} \mathcal{E}_{i} \triangleq \bigcap_{i=1}^{\infty} \bigcup_{n=i}^{\infty} \mathcal{E}_{n}, \quad \mathcal{E}_{*}=\liminf _{i \rightarrow \infty} \mathcal{E}_{i} \triangleq \bigcup_{i=1}^{\infty} \bigcap_{n=i}^{\infty} \mathcal{E}_{n}
$$

Then ε^{*} is the event that infinitely many of $\left\{\varepsilon_{n}\right\}$ occur and ε^{*} is the event that all except a finite number of ε_{i} occur, i.e.,
$\mathcal{E}^{*}=\left\{\omega \in \Omega: \omega \in \mathcal{E}_{i}\right.$, for infinitely many values of $\left.i\right\}$,
$\mathcal{E}_{*}=\left\{\omega \in \Omega: \omega \in \mathcal{E}_{i}\right.$, for all but finite many of $\left.i\right\}$,
Now if we know $\operatorname{Pr}\left(\mathcal{E}_{n}\right)$, what can we say about $\operatorname{Pr}\left(\mathcal{E}^{*}\right)$?
Borel-Cantelli Lemmas

1. If $\sum \operatorname{Pr}\left(\mathcal{E}_{i}\right)<\infty$, then $\operatorname{Pr}\left(\mathcal{E}^{*}\right)=0$.
2. If $\sum \operatorname{Pr}\left(\mathcal{E}_{i}\right)$ diverges, and $\left\{\varepsilon_{n}\right\}$ are independent, then $\operatorname{Pr}\left(\mathcal{E}^{*}\right)=1$.

Consider the random experiment: taking the Qualify exam. The probability model is given by (Ω, \mathcal{F}, P) where

- the sample space $\Omega_{2}=\{P, F P, F F P, F F F P, \cdots$,$\} ;$
- the σ-field \mathcal{F} includes all subsets of Ω_{2}, i.e., $\mathcal{F}=2^{\Omega}$.
- If the probability of passing is p, and assume that you learned nothing from the last time, then

$$
\operatorname{Pr}(\underbrace{F F \cdots F}_{k} P)=(1-p)^{k} p
$$

Q: What is the probability that you will pass in no more than three tries?

$$
\mathcal{E}=\{P, F P, F F P\}, \quad \operatorname{Pr}(\mathcal{E})=p+(1-p) p+(1-p) p^{2}
$$

Q: What is the probability that you pass eventually?
Let \mathcal{E}_{i} be the event that you pass in no more than i tries. Then \mathcal{E}_{i}^{c} is the event that you have not succeeded after i tries.

$$
\operatorname{Pr}\left(\mathcal{E}_{i}\right)=1-\operatorname{Pr}\left(\mathcal{E}_{i}^{c}\right)=1-(1-p)^{i}
$$

The event of pass eventually is given by

$$
\mathcal{E}=\bigcup_{i=1}^{\infty} \mathcal{E}_{i}, \quad \operatorname{Pr}(\mathcal{E})=\lim _{i \rightarrow \infty} \operatorname{Pr}\left(\mathcal{E}_{i}\right)=1
$$

Q: What if your chance of passing increases with the number of tries, you would expect to do better, and $\operatorname{Pr}(\mathcal{E})=1$. How about your chance actually decreases with the number of tries?

Conditional Probability

Definition

Let ε_{1} and ε_{2} be two events. Assuming that $\operatorname{Pr}\left(\mathcal{E}_{2}\right) \neq 0$, the conditional probability of the event ε_{1} given that ε_{2} has already occurred is given by

$$
\operatorname{Pr}\left(\mathcal{E}_{1} \mid \mathcal{E}_{2}\right)=\frac{\operatorname{Pr}\left(\varepsilon_{1} \cap \varepsilon_{2}\right)}{\operatorname{Pr}\left(\mathcal{E}_{2}\right)}
$$

Ω

We can think "conditioning" as generating a new probability model (based on the observation of event ε_{2}) from the old by treating ε_{2} as the new sample space Ω^{\prime}

The Channel

The binary symmetric channel (BSC) is defined by the conditional probability

$$
\begin{aligned}
& \operatorname{Pr}(Y=0 \mid X=0)=\operatorname{Pr}(Y=1 \mid X=1)=1-p, \\
& \operatorname{Pr}(Y=1 \mid X=0)=\operatorname{Pr}(Y=0 \mid X=1)=p
\end{aligned}
$$

The Sample Space
$\Omega=\{(X=x, Y=y), x, y, \in\{0,1\}\}=\{(0,0),(0,1),(1,0),(1,1)\}$.
The σ-field

$$
\mathcal{F}=\{\emptyset, \Omega,\{(0,0)\}, \cdots,\{(1,1)\},\{(0,0)\} \bigcup\{(0,1)\} \cdots\}
$$

The Probability Measure
Suppose that $\{X=0\}$ and $\{X=1\}$ are equally likely.

$$
\begin{aligned}
& \operatorname{Pr}[\{(0,0)\}]=\operatorname{Pr}(X=0) \operatorname{Pr}(Y=0 \mid X=0)=\frac{1-p}{2}, \\
& \operatorname{Pr}[\{(1,1)\}]=\operatorname{Pr}(X=1) \operatorname{Pr}(Y=1 \mid X=1)=\frac{1-p}{2} \\
& \operatorname{Pr}[\{(1,0)\}]=\operatorname{Pr}(X=0) \operatorname{Pr}(Y=1 \mid X=0)=\frac{p}{2} \\
& \operatorname{Pr}[\{(0,1)\}]=\operatorname{Pr}(X=1) \operatorname{Pr}(Y=0 \mid X=1)=\frac{p}{2}
\end{aligned}
$$

Total Probability Theorem

If $\left\{\varepsilon_{i}\right\}$ partition Ω, i.e.,

$$
\bigcup \mathcal{E}_{i}=\Omega, \quad \mathcal{E}_{i} \bigcap \mathcal{E}_{j}=\emptyset,
$$

then

$$
\operatorname{Pr}(\mathcal{B})=\sum \operatorname{Pr}\left(\mathcal{E}_{i}\right) \operatorname{Pr}\left(\mathcal{B} \mid \mathcal{E}_{i}\right)
$$

Ω

The Bayes Formula

$$
\operatorname{Pr}\left(\mathcal{E}_{i} \mid \mathcal{B}\right)=\frac{\operatorname{Pr}\left(\mathcal{B} \mid \mathcal{E}_{i}\right) \operatorname{Pr}\left(\mathcal{E}_{i}\right)}{\sum \operatorname{Pr}\left(\mathcal{E}_{i}\right) \operatorname{Pr}\left(\mathcal{B} \mid \varepsilon_{i}\right)}
$$

Definition

Two events ε_{1} and ε_{2} are statistically independent if

$$
\operatorname{Pr}\left(\mathcal{E}_{1} \bigcap \mathcal{E}_{2}\right)=\operatorname{Pr}\left(\mathcal{E}_{1}\right) \operatorname{Pr}\left(\mathcal{E}_{2}\right)
$$

which implies that

$$
\operatorname{Pr}\left(\mathcal{E}_{1} \mid \mathcal{E}_{2}\right)=\operatorname{Pr}\left(\mathcal{E}_{1}\right), \quad \operatorname{Pr}\left(\mathcal{E}_{2} \mid \mathcal{E}_{1}\right)=\operatorname{Pr}\left(\mathcal{E}_{2}\right)
$$

Events $\left\{\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right\}$ are statistically independent if

$$
\begin{aligned}
\operatorname{Pr}\left(\mathcal{E}_{1} \bigcap \varepsilon_{2}\right) & =\operatorname{Pr}\left(\varepsilon_{1}\right) \operatorname{Pr}\left(\mathcal{E}_{2}\right) \\
\operatorname{Pr}\left(\mathcal{E}_{1} \bigcap \varepsilon_{3}\right) & =\operatorname{Pr}\left(\varepsilon_{1}\right) \operatorname{Pr}\left(\mathcal{E}_{3}\right) \\
\operatorname{Pr}\left(\mathcal{E}_{2} \bigcap \varepsilon_{3}\right) & =\operatorname{Pr}\left(\mathcal{E}_{2}\right) \operatorname{Pr}\left(\mathcal{E}_{3}\right) \\
\operatorname{Pr}\left(\varepsilon_{1} \bigcap \varepsilon_{2} \bigcap \varepsilon_{3}\right) & =\operatorname{Pr}\left(\varepsilon_{1}\right) \operatorname{Pr}\left(\varepsilon_{2}\right) \operatorname{Pr}\left(\mathcal{E}_{3}\right)
\end{aligned}
$$

In general, events $\left\{\varepsilon_{1}, \cdots, \varepsilon_{n}\right\}$ are statistically independent if

$$
\operatorname{Pr}\left(\mathcal{E}_{i_{1}} \bigcap \varepsilon_{i_{2}} \bigcap \cdots \bigcap \varepsilon_{i_{k}}\right)=\operatorname{Pr}\left(\mathcal{E}_{i_{1}}\right) \operatorname{Pr}\left(\mathcal{E}_{i_{2}}\right) \cdots \operatorname{Pr}\left(\varepsilon_{i_{k}}\right)
$$

for all $\left\{i_{1}, \cdots, i_{k}\right\} \subset\{1, \cdots, n\}$.

Definition

Given any probability space $(\Omega, \mathcal{F}, \operatorname{Pr})$, a random variable is a function

$$
X: \Omega \rightarrow R
$$

such that, for all $x,\{\omega \in \Omega: X(\omega) \leq x\} \in \mathcal{F}$.

Notations

We use capital letters to indicate random variables and their corresponding small letters to indicate their
"realizations" \ddagger. For example, in $X=x, X$ is the random variable (a function) and x is the value that X takes (with some probability).

[^1]The cumulative distribution function (CDF) of a random variable X is

$$
F_{X}(x) \triangleq \operatorname{Pr}(X \leq x)
$$

Properties

1. $F_{X}(-\infty)=0, F_{X}(\infty)=1$.
2. If $x<y$, then $F_{X}(x) \leq F_{X}(y)$.
3. $F(\cdot)$ is right continuous, i.e., $\lim _{\Delta \rightarrow 0^{+}} F_{X}(x+\Delta)=F_{X}(x)$
4. $\operatorname{Pr}(x<X \leq y)=F_{X}(y)-F_{X}(x)$.
5. A useful interpretation is

$$
\begin{aligned}
\operatorname{Pr}(X \in(x, x+d x)) & =F_{X}(x+d x)-F_{X}(x) \triangleq d F_{X}(x) \\
\operatorname{Pr}(X \in \mathcal{A}) & =\int_{\mathcal{A}} d F_{X}(x)
\end{aligned}
$$

6. $\operatorname{Pr}\left(X=x_{0}\right)=F_{X}\left(x_{0}\right)-\lim _{y \uparrow x_{0}} F_{X}(y)$.

For discrete random variables, i.e., X takes values in a countable set $\left\{x_{i}\right\}$. The probability mass function (PMF) of is given by

$$
f_{X}(x) \triangleq \operatorname{Pr}(X=x)
$$

The PMF is related to CDF by

$$
F_{X}(x)=\sum_{u: u \leq x} f_{X}(u)
$$

For any event $\mathcal{\varepsilon}$, we have

$$
\operatorname{Pr}(\mathcal{E})=\sum_{u \in \mathcal{E}} f_{X}(u)
$$

To unify notations, we also write the above as

$$
\operatorname{Pr}(\mathcal{E})=\int_{\mathcal{E}} f_{X}(x) d x=\int_{\mathcal{E}} d F_{X}(x)
$$

A random variable is continuous if its distribution function can be expressed as

$$
\begin{equation*}
F_{X}(x)=\int_{-\infty}^{x} f_{X}(u) d u \tag{1}
\end{equation*}
$$

for some integrable function $f_{X}: \mathcal{R} \rightarrow[0, \infty)$. Function $f_{X}(x)$ is the probability density function (pdf) of X :

$$
f_{X}(x)=\frac{d}{d x} F_{X}(x)
$$

Properties:

- $f_{X}(u) \geq 0$.
- $\int_{-\infty}^{\infty} f_{X}(u) d u=1$.
- $\int_{a}^{b} f_{X}(u) d u=\operatorname{Pr}(a<X \leq b)$.
- $\operatorname{Pr}(\varepsilon)=\int_{\varepsilon} f_{X}(u) d u$.

Given a random vector $\mathbf{X}=\left[X_{1}, \cdots, X_{n}\right]$ defined on the probability space (Ω, \mathcal{F}, P),

- the joint density distribution function is given by

$$
F_{\mathbf{X}}(\mathbf{x})=\operatorname{Pr}(\mathbf{X} \leq \mathbf{x}) \triangleq \operatorname{Pr}\left(X_{1} \leq x_{1}, \cdots, X_{n} \leq x_{n}\right) .
$$

- The joint density function is given by

$$
f_{\mathbf{X}}(\mathbf{x})=\frac{\partial^{n}}{\partial x_{1} \cdots \partial x_{n}} F_{\mathbf{X}}(\mathbf{x})
$$

- The marginal distribution of X_{i} is given by

$$
F_{X_{i}}(x) \triangleq \operatorname{Pr}\left(X_{i}<x\right)=F_{\mathbf{X}}(\infty, \cdots, \infty, \underbrace{x}_{i t h}, \infty, \cdots, \infty)
$$

- The marginal density is given by

$$
f_{X_{i}}(x)=\frac{d}{d x} F_{X_{i}}(x)=\int f_{\mathbf{X}}(\mathbf{x}) d x_{1} \cdots d x_{i-1} d x_{i+1} \cdots d x_{n}
$$

Recall Independent Events

- \mathcal{A} and \mathcal{B} are statistically independent if

$$
\operatorname{Pr}(\mathcal{A} \bigcap \mathcal{B})=\operatorname{Pr}(A) \operatorname{Pr}(B)
$$

- Events $\{A, B, C\}$ are statistically independent if

$$
\begin{aligned}
\operatorname{Pr}(\mathcal{A} \bigcap \mathcal{B}) & =\operatorname{Pr}(\mathcal{A}) P(\mathcal{B}) \\
\operatorname{Pr}(\mathcal{A} \bigcap \mathcal{C}) & =\operatorname{Pr}(\mathcal{A}) \operatorname{Pr}(\mathcal{C}) \\
\operatorname{Pr}(\mathcal{C} \bigcap \mathcal{B}) & =\operatorname{Pr}(\mathcal{C}) \operatorname{Pr}(\mathcal{B}) \\
\operatorname{Pr}(\mathcal{A} \bigcap \mathcal{B} \bigcap \mathcal{C}) & =\operatorname{Pr}(\mathcal{A}) \operatorname{Pr}(\mathcal{B}) \operatorname{Pr}(\mathcal{C})
\end{aligned}
$$

Independent Random Variables
We call n random variables $\mathbf{X}=\left(X_{1}, \cdots, X_{n}\right)$ statistically independent if

$$
F_{\mathbf{X}}(\mathbf{x})=F_{X_{1}}\left(x_{1}\right) \cdots F_{X_{n}}\left(x_{n}\right)
$$

or equivalently

$$
f_{\mathbf{X}}(\mathbf{x})=f_{X_{1}}\left(x_{1}\right) \cdots f_{X_{n}}\left(x_{n}\right)
$$

Conditional Distribution

Consider random variables X and Y with joint distribution (or density) function $F_{X, Y}(x, y)\left(f_{X, Y}(x, y)\right)$. The conditional distribution of X given $Y=y$ is defined as

$$
F_{X \mid Y}(x \mid y) \triangleq \operatorname{Pr}(X \leq x \mid Y=y)=\lim _{\epsilon \in 0} \frac{\operatorname{Pr}(X \leq x, y<Y \leq y+\epsilon)}{\operatorname{Pr}(y<Y \leq y+\epsilon)}
$$

The conditional density function of $F_{X \mid Y}$, written as $f_{X \mid Y}$, is given by

$$
f_{X \mid Y}(x \mid y)= \begin{cases}\frac{f_{X Y}(x, y)}{f_{Y}(y)} & f_{Y}(y) \neq 0 \\ 0 & \text { otherwise }\end{cases}
$$

where $f_{Y}(y)=\int f_{X, Y}(u, y) d u$ is the marginal pdf of Y.
Further,

$$
F_{X \mid Y}(x \mid y)=\int_{-\infty}^{x} f_{X \mid Y}(u \mid y) d u
$$

If X and Y are independent, $f_{X \mid Y}(x \mid y)=f_{X}(x)$.

Example: Consider independent random variables X and N such that

$$
Y=X+N
$$

where X is discrete with PMF $f_{X}(x)$ and N is continuous with PDF $f_{N}(n)$. Then

$$
\begin{aligned}
F_{Y \mid X}(y \mid x) & =\operatorname{Pr}(Y \leq y \mid X=x)=\frac{\operatorname{Pr}(N \leq y-x, X=x)}{f_{X}(x)}=F_{N}(y-x) \\
F_{X \mid y}(x \mid y) & =\operatorname{Pr}(X=x \mid Y=y)=\lim _{\epsilon \downarrow 0} \frac{\operatorname{Pr}(X=x, y<Y \leq y+\epsilon)}{\operatorname{Pr}(y<Y \leq y+\epsilon)}=\frac{f_{Y \mid X}(y \mid x) f_{X}(x)}{f_{Y}(y)} \\
f_{Y \mid X}(y \mid x) & =f_{N}(y-x)
\end{aligned}
$$

Definition

For a random variable X

$$
\mathbb{E}(X)=\int_{-\infty}^{\infty} x d F_{X}(x), \quad \mathbb{E}(g(X))=\int_{-\infty}^{\infty} g(x) d F_{X}(x)
$$

Properties

1. The indicator function of an event ε is defined as

$$
1_{\varepsilon}(x)= \begin{cases}1 & x \in \mathcal{E} \\ 0 & \text { otherwise }\end{cases}
$$

We then have

$$
\operatorname{Pr}(\varepsilon)=\int_{\varepsilon} d F_{X}(x)=\mathbb{E}\left(1_{\varepsilon}(X)\right)
$$

2. If X is nonnegative random variable with CDF F,

$$
\mathbb{E}(X)=\int_{0}^{\infty}\left(1-F_{X}(x)\right) d x
$$

3. Linearity: $\mathbb{E}(\alpha X+\beta Y)=\alpha \mathbb{E}(X)+\beta \mathbb{E}(Y)$.
4. If X and Y are independent, then

$$
\mathbb{E}(h(X) g(Y))=\mathbb{E}(h(X)) \mathbb{E}(g(Y)) .
$$

5. Variance and Covariance

$$
\begin{aligned}
\operatorname{Var}(X) & \triangleq \mathbb{E}(X-\mathbb{E}(X))^{2}, \\
\operatorname{Cov}(X, Y) & \triangleq \mathbb{E}(\mathbb{E}(X-\mathbb{E}(X)) \mathbb{E}(Y-\mathbb{E}(Y))) .
\end{aligned}
$$

The standard deviation of X is $\sqrt{\operatorname{Var}(X)}$.
6. X and Y are uncorrelated if $\operatorname{Cov}(X, Y)=0$.
7. For a real random vector $\mathbf{X}=\left[X_{1}, \cdots, X_{n}\right]^{T}$,

Mean: $\quad \mathbb{E}(\mathbf{X})=\left[\mathbb{E}\left(X_{1}\right), \cdots, \mathbb{E}\left(X_{n}\right)\right]^{T}$
Covariance: $\quad \operatorname{Cov}(\mathbf{X}, \mathbf{X})=\mathbb{E}(\mathbf{X}-\mathbb{E}(\mathbf{X}))(\mathbf{X}-\mathbb{E}(\mathbf{X}))^{T}$

- $\operatorname{Cov}(\mathbf{X}, \mathbf{X})$ is always positive (semi) definite.
- If \mathbf{X} is a vector of uncorrelated random variables, then $\operatorname{Cov}(\mathbf{X}, \mathbf{X})$ is diagonal with variances as diagonal entries.

The conditional expectation of $g(\mathbf{X})$ given $\mathbf{Y}=\mathbf{y}$ is given by

$$
\mathbb{E}(g(\mathbf{X}) \mid \mathbf{Y}=\mathbf{y})=\int g(\mathbf{x}) f_{\mathbf{X} \mid \mathbf{Y}}(\mathbf{x} \mid \mathbf{y}) d \mathbf{x}
$$

Note that $\mathbb{E}(g(\mathbf{X}) \mid \mathbf{Y}=\mathbf{y})$ is a function of y .
Conditional Mean as a Random Variable

- We denote $\mathbb{E}(g(\mathbf{X}) \mid \mathbf{Y})$ as the random variable that takes the value $\mathbb{E}(g(\mathbf{X}) \mid \mathbf{Y}=\mathbf{y})$ when $\mathbf{Y}=\mathbf{y}$.
- Successive conditioning:

$$
\mathbb{E}(g(\mathbf{X}))=\mathbb{E}(\mathbb{E}(g(\mathbf{X}) \mid \mathbf{Y}))
$$

As an example, suppose that $Y \sim \mathcal{U}(0,1)$ and $X \sim \mathcal{U}(0, Y)$.

$$
\begin{aligned}
\mathbb{E}(X) & =\mathbb{E}(\mathbb{E}(X \mid Y))=\mathbb{E}\left(\frac{Y}{2}\right)=\frac{1}{4} \\
\mathbb{E}\left(X^{2}\right) & =\mathbb{E}\left(\mathbb{E}\left(X^{2} \mid Y\right)\right)=\mathbb{E}\left(\frac{Y^{2}}{3}\right)=\frac{1}{9}
\end{aligned}
$$

Product Expectation Theorem

 If $g(Y)$ is bounded and $\mathbb{E}(h(X)) \leq \infty$, then$$
\mathbb{E}(h(X) g(Y))=\mathbb{E}(g(Y) \mathbb{E}(h(X) \mid Y))
$$

A special case is when $g(y)=1$ and $h(x)=x$

$$
\mathbb{E}(X)=\mathbb{E}(\mathbb{E}(X \mid Y))
$$

The $Q(\cdot)$ function

$$
Q(\alpha) \triangleq \frac{1}{\sqrt{2 \pi}} \int_{\alpha}^{\infty} e^{-\frac{u^{2}}{2}} d u \underbrace{\sigma^{2}=1}_{0} \int_{\alpha}^{f_{X}(x) \sim \mathcal{N}(0,1)} \text { Q(x)= } \int_{\alpha}^{\infty} f_{X}(x) d x
$$

Properties

1. Probability: If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then

$$
\operatorname{Pr}[X>\alpha]=Q\left(\frac{\alpha-\mu}{\sigma}\right), \quad \operatorname{Pr}(X<\alpha)=Q\left(\frac{\mu-\alpha}{\sigma}\right)
$$

2. Bounds:

$$
\left(1-\frac{1}{x^{2}}\right) \frac{e^{-x^{2} / 2}}{x \sqrt{2 \pi}} \leq Q(x) \leq \frac{1}{2} e^{-x^{2} / 2}
$$

Definitions:

$$
\begin{aligned}
\operatorname{erf}(\alpha) & \triangleq \frac{\Delta}{\sqrt{\pi}} \int_{0}^{\alpha} e^{-u^{2}} d u \\
\operatorname{erfc}(\alpha) & \triangleq \frac{2}{\sqrt{\pi}} \int_{\alpha}^{\infty} e^{-u^{2}} d u=1-\operatorname{erf}(\alpha)
\end{aligned}
$$

Relations

$$
\begin{aligned}
Q(\alpha) & =\frac{1}{2} \operatorname{erfc}\left(\frac{\alpha}{\sqrt{2}}\right)=\frac{1}{2}\left(1-\operatorname{erf}\left(\frac{\alpha}{\sqrt{2}}\right)\right) \\
\operatorname{erf} c(\alpha) & =2 Q(\sqrt{2} \alpha)
\end{aligned}
$$

A random vector $\mathbf{X}=\left[X_{1}, \cdots, X_{n}\right]^{T}$ is Gaussian if

$$
f_{\mathbf{X}}(\mathbf{x})=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det}(\boldsymbol{\Sigma})}} \exp \left\{-\frac{1}{2}(\mathbf{X}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{X}-\boldsymbol{\mu})\right\}
$$

where

$$
\begin{aligned}
\boldsymbol{\mu} & =\mathbb{E}(\mathbf{X})=\left(\begin{array}{c}
E\left(X_{1}\right) \\
\vdots \\
E\left(X_{n}\right)
\end{array}\right) \\
\boldsymbol{\Sigma} & =\mathbb{E}\left\{(\mathbf{X}-\mathbf{m})(\mathbf{X}-\mathbf{m})^{T}\right\} \\
& =\left(\begin{array}{cccc}
\operatorname{Cov}\left(X_{1}, X_{1}\right) & \operatorname{Cov}\left(X_{1}, X_{2}\right) & \ldots & \operatorname{Cov}\left(X_{1}, X_{n}\right) \\
\operatorname{Cov}\left(X_{2}, X_{1}\right) & \operatorname{Cov}\left(X_{2}, X_{2}\right) & \ldots & \operatorname{Cov}\left(X_{2}, X_{n}\right) \\
\vdots & & & \vdots \\
\operatorname{Cov}\left(X_{n}, X_{1}\right) & \operatorname{Cov}\left(X_{n}, X_{2}\right) & \ldots & \operatorname{Cov}\left(X_{n}, X_{n}\right)
\end{array}\right)
\end{aligned}
$$

- Random variables X_{1}, \cdots, X_{n} are called jointly Gaussian.
- The Gaussian distribution is completely specified by the mean and the covariance.

Suppose that $\mathrm{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.

- Jointly Gaussian implies marginally Gaussian. In particular,

$$
X_{i} \sim \mathcal{N}\left(\mathbb{E}\left(X_{i}\right), \operatorname{Cov}\left(X_{i}, X_{i}\right)\right) .
$$

Any sub-vector of X is Gaussian. (The converse is not true in general!)

- For any matrix A and vector $\mathrm{b}, \mathrm{Y}=\mathrm{AX}+\mathrm{b}$ is Gaussian and

$$
\mathbf{Y} \sim \mathcal{N}\left(\mathbf{A} \boldsymbol{\mu}+\mathbf{b}, \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{t}\right) .
$$

Proof:

$$
\begin{aligned}
\mathbb{E}(\mathbf{Y}) & =\mathbf{A} \mathbb{E}(\mathbf{X})+\mathbf{b} \\
\operatorname{Cov}(\mathbf{Y}, \mathbf{Y}) & =\mathbb{E}\left(\mathbf{A}(\mathbf{X}-\boldsymbol{\mu})(\mathbf{X}-\boldsymbol{\mu})^{t} \mathbf{A}^{t}\right)=\mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{t}
\end{aligned}
$$

- Uncorrelated Gaussian random variables are independent.
- If

$$
\left[\begin{array}{l}
\mathbf{y} \tag{2}\\
\mathbf{z}
\end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{l}
\boldsymbol{\mu}_{y} \\
\boldsymbol{\mu}_{z}
\end{array}\right],\left[\begin{array}{cc}
\boldsymbol{\Sigma}_{y y} & \boldsymbol{\Sigma}_{y z} \\
\boldsymbol{\Sigma}_{z y} & \boldsymbol{\Sigma}_{z z}
\end{array}\right]\right),
$$

$f_{\mathbf{Y} \mid \mathbf{Z}}(\mathbf{y} \mid \mathbf{z})$ is the complex Gaussian density with

$$
\begin{aligned}
\mathbb{E}(\mathbf{y} \mid \mathbf{z}) & =\boldsymbol{\mu}_{y}+\boldsymbol{\Sigma}_{y z} \boldsymbol{\Sigma}_{z z}^{-1}\left(\mathbf{z}-\boldsymbol{\mu}_{z}\right) \\
\operatorname{Cov}\left(\mathbf{y}, \mathbf{y}^{H} \mid \mathbf{z}\right) & =\boldsymbol{\Sigma}_{y y}-\boldsymbol{\Sigma}_{y z} \Sigma_{z z}^{-1} \boldsymbol{\Sigma}_{z y}
\end{aligned}
$$

Definition

The probability space of a complex random vector
$\mathbf{X}=\mathbf{X}_{R}+j \mathbf{X}_{I}$ is defined by the joint distribution of \mathbf{X}_{R} and \mathbf{X}_{I}. A complex random vector \mathbf{X} is proper (or
symmetrical) if

$$
\operatorname{Cov}\left(\mathbf{X X}^{T}\right)=\mathbf{0} \Rightarrow\left\{\begin{array}{l}
\operatorname{Cov}\left(\mathbf{X}_{R}, \mathbf{X}_{R}^{t}\right)=\operatorname{Cov}\left(\mathbf{X}_{I}, \mathbf{X}_{I}^{t}\right) \\
\operatorname{Cov}\left(\mathbf{X}_{R}, \mathbf{X}_{I}^{t}\right)=-\operatorname{Cov}\left(\mathbf{X}_{I}, \mathbf{X}_{R}^{t}\right)
\end{array}\right.
$$

Remarks

- If \mathbf{X} is symmetrical, then all second-order statistics of \mathbf{X} is contained in $\operatorname{Cov}\left(\mathbf{X}, \mathbf{X}^{H}\right)$.

$$
\begin{aligned}
\operatorname{Cov}\left(\mathbf{X}, \mathbf{X}^{H}\right)= & \operatorname{Cov}\left(\mathbf{X}_{R}, \mathbf{X}_{R}^{T}\right)+\operatorname{Cov}\left(\mathbf{X}_{I}, \mathbf{X}_{I}^{T}\right) \\
& -j\left(\operatorname{Cov}\left(\mathbf{X}_{R}, \mathbf{X}_{I}^{T}\right)-\operatorname{Cov}\left(\mathbf{X}_{I}, \mathbf{X}_{R}^{T}\right)\right) \\
= & 2 \operatorname{Cov}\left(\mathbf{X}_{R}, \mathbf{X}_{R}^{T}\right)+2 j \operatorname{Cov}\left(\mathbf{x}_{I}, \mathbf{x}_{R}^{t}\right)
\end{aligned}
$$

- If \mathbf{X} is proper, then $\mathbf{A X}+\mathbf{b}$ is also proper (invariant under affine transforms).
- For proper complex random vectors, we can use complex arithmetics at a lower dimension by changing transpose to Hermitian.

Random vector x is complex Gaussian if

1. X is symetrical
2. $\binom{\mathbf{X}_{R}}{\mathbf{X}_{I}}$ is Gaussian.

Properties

- Distribution: $\mathbf{X} \sim \mathcal{N}_{c}(\mu, \Sigma)$ implies

$$
\begin{aligned}
E(\mathbf{X}) & =\mu, \operatorname{cov}\left(\mathbf{x}, \mathbf{x}^{H}\right)=\Sigma \\
f_{\mathbf{X}}(\mathbf{x}) & =\frac{1}{\pi^{n}|\Sigma|} \exp \left\{-(\mathbf{x}-\mu)^{H} \Sigma^{-1}(\mathbf{x}-\mu)\right\} .
\end{aligned}
$$

- When $\mathbf{X}_{R}, \mathbf{X}_{I} \sim \mathcal{N}\left(0, \frac{N_{0}}{2} \mathbf{I}\right), \mathbf{X} \sim \mathcal{N}_{c}\left(0, N_{0} \mathbf{I}\right)$,

$$
p(\mathbf{x})=\frac{1}{\pi^{n} N_{0}^{n}} \exp \left\{-\frac{\|\mathbf{x}\|^{2}}{N_{0}}\right\} .
$$

- A userful case: If $\mathbf{X}=\mathbf{S}+\mathbf{N}$ where \mathbf{S} and \mathbf{N} are independent, $\mathbf{N} \sim \mathcal{N}\left(0, N_{0} \mathbf{I}\right)$,

$$
f_{\mathbf{X} \mid \mathbf{S}}(\mathbf{x} \mid \mathbf{s})=\frac{1}{\pi^{n} N_{0}^{n}} \exp \left\{-\frac{\|\mathbf{x}-\mathbf{s}\|^{2}}{N_{0}}\right\}
$$

Convex Set and Convex Function

A set X in \mathcal{R}^{n} or \mathcal{C}^{n} is convex if, for every $\mathbf{x}_{1}, \mathbf{x}_{2} \in X$ and $\theta \in[0,1], \mathbf{x}=\theta \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2} \in X$. A real valued function $f(\cdot)$ on a convex set X is convex (convex \cup) if, for every $\mathrm{x}_{1}, \mathrm{x}_{2} \in X$ and $\theta \in[0,1]$,

$$
f\left(\theta \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2}\right) \leq \theta f\left(\mathbf{x}_{1}\right)+(1-\theta) f\left(\mathbf{x}_{2}\right)
$$

A function is strictly convex if the strict inequality holds. A function f is concave (convex \cap) if $-f$ is convex.

Convex function

Concave function

Jensen's Inequality

Let f be a real valued convex function. Then

$$
f(\mathbb{E}(\mathbf{x})) \leq \mathbb{E}(f(\mathbf{x}))
$$

For concave f, the inequality is reversed.

The Markov Inequality: For any non-negative function $h(\cdot)$,

$$
\operatorname{Pr}[h(X) \geq a] \leq \frac{\mathbb{E}(h(X))}{a} \quad \forall a>0
$$

$X \triangleq\{x: h(x) \geq a\}$

Chebyshev Inequality: Setting $h(x)=|x-\mathbb{E}(X)|^{2}$,

$$
\operatorname{Pr}\left[\frac{|X-\mathbb{E}(X)|}{\epsilon} \geq 1\right] \leq \frac{\operatorname{Var}(X)}{\epsilon^{2}}
$$

As an application, for i.i.d. X_{i} and $\mathbb{E}\left(X_{i}\right)=p$,

$$
Y_{N}=\frac{1}{N} \sum_{i=1}^{N} X_{i} \rightarrow \operatorname{Pr}\left(\left|Y_{N}-p\right|>\epsilon\right) \leq \frac{\operatorname{Var}(X)}{N \epsilon^{2}}
$$

The probability of Y_{N} deviates from its mean decreases with $O\left(\frac{1}{N}\right)$.

A Lower Bound

If h is a non-negative uniformly bounded by M, then

$$
\operatorname{Pr}(h(X) \geq a) \geq \frac{\mathbb{E}(h(X))-a}{M-a}, \quad a \in[0, M)
$$

If we want to have exponentially decaying probability, we may need the Chernoff bound. Let X be a random variable. For any $\lambda>0$ and τ,

$$
\operatorname{Pr}[X \geq \tau] \leq \exp \left\{-\lambda \tau+\phi_{X}(\lambda)\right\}
$$

where

$$
\phi_{X}(\lambda) \triangleq \ln \mathbb{E}\left(e^{\lambda X}\right)
$$

is the cumulant generating function. Similarly, we also have

$$
\operatorname{Pr}[X \leq \tau] \leq \exp \left\{\lambda \tau+\phi_{X}(-\lambda)\right\}
$$

Proof: Use the Markov inequality with $h(X)=e^{\lambda X}$ and $a=e^{\lambda \tau}$

τ

Remark: The Chernoff bound can be tightened by optimizing λ.

Consider

$$
Y_{N} \triangleq \frac{1}{N} \sum_{i=1}^{N} X_{i}, \quad X_{i} \stackrel{\text { i.i.d. }}{\sim} \mathcal{B}(p)
$$

By the Chernoff bound,

$$
\begin{aligned}
\operatorname{Pr}\left[Y_{N} \geq a\right] & =\operatorname{Pr}\left[\sum X_{i} \geq N a\right] \leq e^{-N \lambda a} \mathbb{E}\left(e^{\lambda \sum X_{i}}\right) \\
& =e^{-N \lambda a}\left[\mathbb{E}\left(e^{\lambda X_{i}}\right)\right]^{N} \\
& =\left[\mathbb{E}\left(e^{\lambda\left(X_{i}-a\right)}\right)\right]^{N}
\end{aligned}
$$

The best λ is given by solving

$$
\left.\frac{d}{d \lambda} \mathbb{E}\left(e^{\lambda\left(X_{i}-a\right)}\right)\right|_{\lambda=\lambda_{o}}=0 \rightarrow \frac{\mathbb{E}\left(X_{i} e^{\lambda_{o} X_{i}}\right)}{\mathbb{E}\left(e^{\lambda_{o} X_{i}}\right)}=a
$$

For Bernoulli r.v. and $a \in(p, 1]$,

$$
\frac{p e^{\lambda_{o}}}{p e^{\lambda_{o}}+(1-p)}=a \rightarrow \lambda_{o}=\ln \frac{a(1-p)}{p(1-a)}>0
$$

Thus,

$$
\left.\operatorname{Pr}\left[Y_{N} \geq a\right] \leq\left[\left(\frac{p}{a}\right)^{a}\left(\frac{1-p}{1-a}\right)^{1-a}\right]^{N}=\exp \{-N D(\mathcal{B}(a) \| \mathcal{B}(p)))\right\}
$$

where

$$
D\left(P_{1} \| P_{2}\right) \triangleq \mathbb{E}_{P_{1}}\left(\log \frac{P_{1}}{P_{2}}\right)
$$

is the Kullback-Leibler divergence, which is always positive.

Definition

Suppose X and $\left\{X_{n}, n=1,2, \cdots\right\}$ are random variables defined on the same probability space. We say that the sequence $\left(X_{n}\right)$ converges in probability, denoted as $X_{n} \xrightarrow{P} X$ if, for all ϵ,

$$
\operatorname{Pr}\left(\left|X_{n}-X\right| \geq \epsilon\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

Example

Let X_{n} be independent variables with PMF

$$
\operatorname{Pr}\left(X_{n}=1\right)=1-\frac{1}{n} \quad \operatorname{Pr}\left(X_{n}=n\right)=\frac{1}{n}
$$

For any $\epsilon>0$,

$$
\operatorname{Pr}\left(\left|X_{n}-1\right|>\epsilon\right)=\operatorname{Pr}\left(X_{n}=n\right)=\frac{1}{n} \rightarrow 0 \text { as } n \rightarrow \infty
$$

Therefore $X_{n} \xrightarrow{P} 1$.
The Weak Law of Large Numbers
Let X_{i} be a sequence of i.i.d. random variables with mean μ and variance σ^{2}. Then,

$$
\bar{X}_{n} \triangleq \frac{1}{n} \sum_{i=1}^{n} X_{i} \xrightarrow{P} \mu
$$

Proof: Use the Chebyshev Inequality for $X=\frac{1}{N} \sum_{i=1}^{N} X_{i}$.

Definition

The sequence (X_{n}) converges almost surely (or strongly), denoted by $X_{n} \xrightarrow{\text { as }} X$, if

$$
\operatorname{Pr}\left(\omega \in \Omega: X_{n}(\omega) \rightarrow X(\omega)\right)=\operatorname{Pr}\left(X_{n} \rightarrow X\right)=1 \text { as } n \rightarrow \infty
$$

Equivalently, $X_{n} \xrightarrow{\text { as }} X$ if $\forall \epsilon>0$ and $\delta \in(0,1)$, there exists n_{0} such that, for all $n>n_{0}$,

$$
\operatorname{Pr}\left(\bigcap_{m>n}\left\{\left|X_{m}-X\right| \leq \epsilon\right\}\right)>1-\delta
$$

Example Revisited Let X_{n} be independent variables with PMF

$$
\operatorname{Pr}\left(X_{n}=1\right)=1-\frac{1}{n} \quad \operatorname{Pr}\left(X_{n}=n\right)=\frac{1}{n}
$$

For every $\epsilon>0, \delta \in(0,1)$, and $N>n$,

$$
\begin{aligned}
\operatorname{Pr}\left(\bigcap_{m>n}\left\{\left|X_{m}-1\right| \leq \epsilon\right\}\right) & \leq \operatorname{Pr}\left(\bigcap_{m=n+1}^{N}\left\{\left|X_{m}-1\right| \leq \epsilon\right\}\right)=\prod_{m=n+1}^{N} \operatorname{Pr}\left(\left|X_{m}-1\right| \leq \epsilon\right) \\
& =\prod_{m=n+1}^{N}\left(1-\frac{1}{m}\right)=\frac{n}{N} \leq 1-\delta
\end{aligned}
$$

Strong Law of Large Numbers

Suppose (X_{n}) are i.i.d. random variables with mean μ and $\mathbb{E}\left(|X|^{4}\right)<\infty$. Then

$$
\bar{X}_{n} \triangleq \frac{1}{n} \sum_{i=1}^{n} X_{i} \stackrel{\text { as }}{\rightarrow} \mu
$$

We can show that

$$
\operatorname{Pr}\left(\left|\bar{X}_{n}-\mu\right|>\epsilon\right) \leq \frac{A}{n^{2}}
$$

where A is a constant. By the Borel-Cantellis Lemma, $\left\{\left|\bar{X}_{n}-\mu\right|>\epsilon\right\}$ happens only finite number of times.

Definition

Suppose X and $\left\{X_{n}, n=1,2, \cdots\right\}$ are random variables defined on the same probability space. We say that the sequence $\left(X_{n}\right)$ with CDF $F_{X_{n}}(x)$ converges in distribution to X with CDF $F_{X}(x)$, denoted as $X_{n} \xrightarrow{D} X$, if $F_{X_{n}}(x) \rightarrow F_{X}(x)$ for all x where $F_{X}(x)$ is continuous.

Central Limit Theorem

Let $\left\{X_{n}\right\}$ be i.i.d. random variables with mean μ and variance σ^{2}. Denote $S_{n}=X_{1}+\cdots+X_{n}$. Then

$$
\frac{S_{n}-n \mu}{\sigma \sqrt{n}} \xrightarrow{D} \mathcal{N}(0,1)
$$

The law of the iterative lograrithm If $\left\{X_{i}\right\}$ are i.i.d. with mean μ and variance σ^{2}. Then

$$
\operatorname{Pr}\left(\limsup _{n \rightarrow \infty} \frac{S_{n}-n \mu}{\sigma \sqrt{2 n \log \log n}}=1\right)=1
$$

This means that the event, with probability 1 , the event

$$
\left\{\frac{S_{n}-n \mu}{\sigma}>\alpha \sqrt{2 n \log \log n}\right\}
$$

should happen only finite number of times if $\alpha>1$ and infinitely many times if $\alpha<1$.

[^0]: ${ }^{\dagger}$ M. Capiński and P. Knopp, Measure, Integral and Probability, Springer, 1999.

[^1]: \ddagger We may use small letters to denote random variables when there is no confusion

