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Outline

Concepts

• Probability space

• Conditional probability and statistical independence.

• Random variables, distributions and densities.

• Expectations and conditional expectations.

• Real and complex Gaussian variables and vectors.

• Inequalities

• Convergence, LLN and CLT.



The Probability Space: Definition

Definition:

A probability space is defined by (Ω,F ,Pr)

1. Ω is the sample space that contains the set of

outcomes.

2. F is a σ-field of subsets of Ω (events):

(i) Ω ∈ F. (ii) If E ∈ F, then E
c ∈ F.

(iii) If Ei ∈ F, then ⋃∞
i=1 Ei ∈ F.

3. Pr is a function on F satisfying

(i) 0 ≤ Pr(E) ≤ 1. (ii) P (Ω) = 1.

(iii) If E1,E2, · · · are disjoint, then

Pr(
⋃∞

i=1 Ei) =
∑

Pr(Ei)

Why Do We Need Restrictions on Events?

Let Ω
∆
= {(x, y)|x2 + y2 = 1}. There exists† a set E ∈ Ω such

that

1. for any rational φ, θ ∈ [0, 2π) and φ 6= θ, the rotation

of E by θ and φ are disjoint, i.e., E(θ)
⋂
E(φ) = ∅.

2. The union of all E rotated by rational θ is Ω.

If Pr(E) = x, then

1 = Pr(Ω) = Pr(
⋃

E(θ)) =
∑

Pr(E(θ)) =
∑

x

†M. Capiński and P. Knopp, Measure, Integral and Probability, Springer, 1999.



The Probability Space: Examples

Sample Space Ω

• Picking the “lucky” person out of a class of 30 to

receive an A: Ω1 = {1, 2, · · · , 29, 30}.

• Taking the qualify exam until pass:

Ω2 = {P, FP, FFP, FFFP, · · · , }.

• The time you wake up: Ω3 = {(00 : 00, 24 : 00]}

• Throwing a dart to a unit disk:

Ω4 = {(x, y)|x2 + y2 ≤ 1}.

Events

Consider Ω1

E0: Someone is lucky: E0 = Ω1.

E1: the “lucky” person has an even ID:

E1 = {2, 4, 6, · · · , 30}.

E2 The “lucky” person has an even number or a

number between 10 and 20. E2 = E1

⋃{11, 13, · · · , 19}.

E4 The “lucky” person has an odd number less than

10. E4 = Ec
1

⋂{1, · · · , 10}.



Elementary Properties

• Pr(Ac) = 1− Pr(A), Pr(∅) = 0.

• If A ⊂ B, then Pr(B) = Pr(A) + Pr(B−A) ≥ Pr(A).

• Union bound (Boole’s inequality):

Pr(
⋃∞

i=1Ai) ≤
∑∞

i=1 Pr(Ai)

A1 A2

A1

⋂
A2

• Inclusion-exclusion:

Pr(A1

⋃

A2) = Pr(A1) + Pr(A2)− Pr(A1

⋂

A2)

Pr(

n⋃

i=1

Ai) =

n∑

i=1

Pr(Ai)−
∑

i<j

Pr(Ai

⋂

Aj)

+
∑

i<j<k

Pr(Ai

⋂

Aj

⋂

Ak)− · · ·

+(−1)k+1
∑

i1<i2<···<ik

Pr(
k⋂

r=1

Air) + · · ·

• Bonferroni’s inequality: Pr(
⋂n

i=1Ai) ≥ 1−∑n
i=1 Pr(A

c
i)



Sequence of Events

Monotone Convergence

If Ei increases, i.e., E1 ⊆ E2 ⊆ · · ·, and let E
∆
=
⋃∞

i=1 Ei. Then

Pr(E) = lim
i→∞

Pr(Ei)

If Ei decreases, i.e., E1 ⊇ E2 ⊇ · · ·, and let E =
⋂∞

i=1 Ei. Then

Pr(E) = lim
i→∞

Pr(Ei)

Limits of Sequences

Let {En} be an arbitrary sequence of events. Define limits

E
∗ = lim sup

i→∞
Ei

∆
=

∞⋂

i=1

∞⋃

n=i

En, E∗ = lim inf
i→∞

Ei
∆
=

∞⋃

i=1

∞⋂

n=i

En

Then E∗ is the event that infinitely many of {En} occur

and E∗ is the event that all except a finite number of Ei

occur, i.e.,

E
∗ = {ω ∈ Ω : ω ∈ Ei, for infinitely many values of i},

E∗ = {ω ∈ Ω : ω ∈ Ei, for all but finite many of i},

Now if we know Pr(En), what can we say about Pr(E∗)?

Borel-Cantelli Lemmas

1. If
∑

Pr(Ei) < ∞ , then Pr(E∗) = 0.

2. If
∑

Pr(Ei) diverges, and {En} are independent, then

Pr(E∗) = 1.



Example: Passing the Qualify

Consider the random experiment: taking the Qualify exam. The

probability model is given by (Ω,F , P ) where

• the sample space Ω2 = {P, FP, FFP, FFFP, · · · , };
• the σ-field F includes all subsets of Ω2, i.e., F = 2Ω.

• If the probability of passing is p, and assume that you learned

nothing from the last time, then

Pr(FF · · ·F︸ ︷︷ ︸
k

P ) = (1− p)kp

Q: What is the probability that you will pass in no more than three

tries?

E = {P, FP, FFP}, Pr(E) = p + (1− p)p+ (1− p)p2

Q: What is the probability that you pass eventually?

Let Ei be the event that you pass in no more than i tries. Then Ec
i

is the event that you have not succeeded after i tries.

Pr(Ei) = 1− Pr(Ec
i) = 1− (1− p)i

The event of pass eventually is given by

E =
∞⋃

i=1

Ei, Pr(E) = lim
i→∞

Pr(Ei) = 1

Q: What if your chance of passing increases with the number of tries,

you would expect to do better, and Pr(E) = 1. How about your

chance actually decreases with the number of tries?



Conditional Probability

Definition

Let E1 and E2 be two events. Assuming that Pr(E2) 6= 0, the

conditional probability of the event E1 given that E2 has

already occurred is given by

Pr(E1|E2) =
Pr(E1

⋂
E2)

Pr(E2)

Ω

E2 = Ω′E1

E1

⋂
E2

We can think “conditioning” as generating a new

probability model (based on the observation of event E2)

from the old by treating E2 as the new sample space Ω′



Example: Binary Symmetrical Channel

The Channel

The binary symmetric channel (BSC) is defined by the

conditional probability

Pr(Y = 0|X = 0) = Pr(Y = 1|X = 1) = 1− p,

Pr(Y = 1|X = 0) = Pr(Y = 0|X = 1) = p

0

1

0

1

1− p

1− p

p

pX Y

The Sample Space

Ω = {(X = x, Y = y), x, y,∈ {0, 1}} = {(0, 0), (0, 1), (1, 0), (1, 1)}.

The σ-field

F = {∅,Ω, {(0, 0)}, · · · , {(1, 1)}, {(0, 0)}
⋃

{(0, 1)} · · ·}

The Probability Measure

Suppose that {X = 0} and {X = 1} are equally likely.

Pr[{(0, 0)}] = Pr(X = 0) Pr(Y = 0|X = 0) =
1− p

2
,

Pr[{(1, 1)}] = Pr(X = 1) Pr(Y = 1|X = 1) =
1− p

2

Pr[{(1, 0)}] = Pr(X = 0) Pr(Y = 1|X = 0) =
p

2
,

Pr[{(0, 1)}] = Pr(X = 1) Pr(Y = 0|X = 1) =
p

2



Total Probability Theorem

Total Probability Theorem

If {Ei} partition Ω, i.e.,
⋃

Ei = Ω, Ei

⋂

Ej = ∅,

then

Pr(B) =
∑

Pr(Ei) Pr(B|Ei)

Ω

B

E1

E2

E3

E4

The Bayes Formula

Pr(Ei|B) =
Pr(B|Ei) Pr(Ei)

∑
Pr(Ei) Pr(B|Ei)



Statistical Independence

Definition

Two events E1 and E2 are statistically independent if

Pr(E1

⋂

E2) = Pr(E1) Pr(E2),

which implies that

Pr(E1|E2) = Pr(E1), Pr(E2|E1) = Pr(E2)

Events {E1,E2,E3} are statistically independent if

Pr(E1

⋂

E2) = Pr(E1) Pr(E2)

Pr(E1

⋂

E3) = Pr(E1) Pr(E3)

Pr(E2

⋂

E3) = Pr(E2) Pr(E3)

Pr(E1

⋂

E2

⋂

E3) = Pr(E1) Pr(E2) Pr(E3)

In general, events {E1, · · · ,En} are statistically independent

if

Pr(Ei1

⋂

Ei2

⋂

· · ·
⋂

Eik) = Pr(Ei1) Pr(Ei2) · · ·Pr(Eik)

for all {i1, · · · , ik} ⊂ {1, · · · , n}.



Random Variables

Definition

Given any probability space (Ω,F ,Pr), a random variable is

a function

X : Ω → R

such that, for all x, {ω ∈ Ω : X(ω) ≤ x} ∈ F.

Ω

ω1
ω2

ω3

X(ω1) X(ω2) X(ω3)
X(ω)

Notations

We use capital letters to indicate random variables and

their corresponding small letters to indicate their

“realizations” ‡. For example, in X = x, X is the random

variable (a function) and x is the value that X takes (with

some probability).

‡We may use small letters to denote random variables when there is no confusion



Cumulative Distribution Function

The cumulative distribution function (CDF) of a random

variable X is

FX(x)
∆
= Pr(X ≤ x)

FX(x)

x

1

Properties

1. FX(−∞) = 0, FX(∞) = 1.

2. If x < y, then FX(x) ≤ FX(y).

3. F (·) is right continuous, i.e., lim∆→0+ FX(x +∆) = FX(x)

4. Pr(x < X ≤ y) = FX(y)− FX(x).

5. A useful interpretation is

Pr(X ∈ (x, x + dx)) = FX(x + dx)− FX(x)
∆
= dFX(x)

Pr(X ∈ A) =

∫

A

dFX(x)

6. Pr(X = x0) = FX(x0)− limy↑x0 FX(y).



Probability Mass Function

For discrete random variables, i.e., X takes values in a

countable set {xi}. The probability mass function (PMF)

of is given by

fX(x)
∆
= Pr(X = x)

fX(x)

x
0 x1 x2 x3

The PMF is related to CDF by

FX(x) =
∑

u:u≤x

fX(u)

For any event E, we have

Pr(E) =
∑

u∈E
fX(u)

To unify notations, we also write the above as

Pr(E) =

∫

E

fX(x)dx =

∫

E

dFX(x)



Probability Density Function

A random variable is continuous if its distribution function

can be expressed as

FX(x) =

∫ x

−∞
fX(u)du (1)

for some integrable function fX : R → [0,∞). Function fX(x)

is the probability density function (pdf) of X:

fX(x) =
d

dx
FX(x).

Properties:

• fX(u) ≥ 0.

•
∫∞
−∞ fX(u)du = 1.

•
∫ b

a fX(u)du = Pr(a < X ≤ b).

• Pr(E) =
∫

E
fX(u)du.

fX(x)

x
a b



Random Vectors

Given a random vector X = [X1, · · · , Xn] defined on the

probability space (Ω,F , P ),

• the joint density distribution function is given by

FX(x) = Pr(X ≤ x)
∆
= Pr(X1 ≤ x1, · · · , Xn ≤ xn).

• The joint density function is given by

fX(x) =
∂n

∂x1 · · · ∂xn
FX(x)

• The marginal distribution of Xi is given by

FXi
(x)

∆
= Pr(Xi < x) = FX(∞, · · · ,∞, x︸︷︷︸

ith

,∞, · · · ,∞)

• The marginal density is given by

fXi
(x) =

d

dx
FXi

(x) =

∫

fX(x)dx1 · · · dxi−1dxi+1 · · · dxn



Independent Random Variables

Recall Independent Events

• A and B are statistically independent if

Pr(A
⋂

B) = Pr(A) Pr(B)

• Events {A,B,C} are statistically independent if

Pr(A
⋂

B) = Pr(A)P (B)

Pr(A
⋂

C) = Pr(A) Pr(C)

Pr(C
⋂

B) = Pr(C) Pr(B)

Pr(A
⋂

B

⋂

C) = Pr(A) Pr(B) Pr(C)

Independent Random Variables

We call n random variables X = (X1, · · · , Xn) statistically

independent if

FX(x) = FX1(x1) · · ·FXn(xn)

or equivalently

fX(x) = fX1(x1) · · · fXn(xn)



Conditioning on Random Variables

Conditional Distribution

Consider random variables X and Y with joint distribution

(or density) function FX,Y (x, y) (fX,Y (x, y)). The conditional

distribution of X given Y = y is defined as

FX|Y (x|y) ∆
= Pr(X ≤ x|Y = y) = lim

ǫ↓0
Pr(X ≤ x, y < Y ≤ y + ǫ)

Pr(y < Y ≤ y + ǫ)

The conditional density function of FX|Y , written as fX|Y , is

given by

fX|Y (x|y) =
{

fX,Y (x,y)

fY (y)
fY (y) 6= 0

0 otherwise

where fY (y) =
∫
fX,Y (u, y)du is the marginal pdf of Y .

Further,

FX|Y (x|y) =
∫ x

−∞
fX|Y (u|y)du

If X and Y are independent, fX|Y (x|y) = fX(x).

Example: Consider independent random variables X and N such that

Y = X +N,

where X is discrete with PMF fX(x) and N is continuous with PDF fN(n). Then

FY |X(y|x) = Pr(Y ≤ y|X = x) =
Pr(N ≤ y − x,X = x)

fX(x)
= FN(y − x)

FX |y(x|y) = Pr(X = x|Y = y) = lim
ǫ↓0

Pr(X = x, y < Y ≤ y + ǫ)

Pr(y < Y ≤ y + ǫ)
=

fY |X(y|x)fX(x)
fY (y)

fY |X(y|x) = fN(y − x)



Expectation of Random Variables

Definition

For a random variable X

E(X) =

∫ ∞

−∞
xdFX(x), E(g(X)) =

∫ ∞

−∞
g(x)dFX(x)

Properties

1. The indicator function of an event E is defined as

1E(x) =

{

1 x ∈ E

0 otherwise

We then have

Pr(E) =

∫

E

dFX(x) = E(1E(X))

2. If X is nonnegative random variable with CDF F ,

E(X) =

∫ ∞

0

(1− FX(x))dx

3. Linearity: E(αX + βY ) = αE(X) + βE(Y ).

4. If X and Y are independent, then

E(h(X)g(Y )) = E(h(X))E(g(Y )).

5. Variance and Covariance

Var(X)
∆
= E(X − E(X))2,

Cov(X, Y )
∆
= E(E(X − E(X))E(Y − E(Y ))).

The standard deviation of X is
√

Var(X).



6. X and Y are uncorrelated if Cov(X, Y ) = 0.

7. For a real random vector X = [X1, · · · , Xn]
T ,

Mean: E(X) = [E(X1), · · · ,E(Xn)]
T

Covariance: Cov(X,X) = E(X− E(X))(X− E(X))T

• Cov(X,X) is always positive (semi) definite.

• If X is a vector of uncorrelated random

variables, then Cov(X,X) is diagonal with

variances as diagonal entries.



Conditional Expectation

The conditional expectation of g(X) given Y = y is given by

E(g(X)|Y = y) =

∫

g(x)fX|Y(x|y)dx

Note that E(g(X)|Y = y) is a function of y.

Conditional Mean as a Random Variable

• We denote E(g(X)|Y) as the random variable that

takes the value E(g(X)|Y = y) when Y = y.

• Successive conditioning:

E(g(X)) = E(E(g(X)|Y))

As an example, suppose that Y ∼ U(0, 1) and
X ∼ U(0, Y ).

E(X) = E(E(X|Y )) = E(
Y

2
) =

1

4

E(X2) = E(E(X2|Y )) = E(
Y 2

3
) =

1

9

Product Expectation Theorem

If g(Y ) is bounded and E(h(X)) ≤ ∞, then

E(h(X)g(Y )) = E(g(Y )E(h(X)|Y ))

A special case is when g(y) = 1 and h(x) = x

E(X) = E(E(X|Y ))



The Gaussian Random Variable

x

fX(x)

µ

1√
2πσ2

N (µ, σ2) : fX(x) =
1√
2πσ2

exp{− (x−µ)2

2σ2 }
E(X) = µ,Var(X) = σ2.

The Q(·) function

Q(α)
∆
=

1√
2π

∫ ∞

α

e−
u2

2 du

αα0

fX(x) ∼ N (0, 1)

Q(x) =
∫∞
α

fX(x)dx
σ2 = 1

Properties

1. Probability: If X ∼ N (µ, σ2), then

Pr[X > α] = Q(
α− µ

σ
), Pr(X < α) = Q(

µ− α

σ
)

2. Bounds:

(1− 1

x2
)
e−x2/2

x
√
2π

≤ Q(x) ≤ 1

2
e−x2/2



Q(·), erf(·), and erfc(·)

Definitions:

erf(α)
∆
=

2√
π

∫ α

0

e−u2du

erfc(α)
∆
=

2√
π

∫ ∞

α

e−u2du = 1− erf(α)

uα0

fX(u) ∼ N (0, 1
2
)

erf(α) = 2√
π

∫ α

0 e−u2

du

σ2 = 1
2

Relations

Q(α) =
1

2
erfc(

α√
2
) =

1

2
(1− erf(

α√
2
))

erfc(α) = 2Q(
√
2α)



Gaussian Random Vectors

A random vector X = [X1, · · · , Xn]
T is Gaussian if

fX(x) =
1

√

(2π)ndet(Σ)
exp{−1

2
(X− µ)TΣ−1(X− µ)}

where

µ = E(X) =






E(X1)
...

E(Xn)






Σ = E{(X−m)(X−m)T}

=








Cov(X1, X1) Cov(X1, X2) · · · Cov(X1, Xn)

Cov(X2, X1) Cov(X2, X2) · · · Cov(X2, Xn)
... ...

Cov(Xn, X1) Cov(Xn, X2) · · · Cov(Xn, Xn)








• Random variables X1, · · · , Xn are called jointly

Gaussian.

• The Gaussian distribution is completely specified by

the mean and the covariance.



Properties of Gaussian Random Vectors

Suppose that X ∼ N (µ,Σ).

• Jointly Gaussian implies marginally Gaussian. In

particular,

Xi ∼ N (E(Xi),Cov(Xi, Xi)).

Any sub-vector of X is Gaussian. (The converse is

not true in general!)

• For any matrix A and vector b, Y = AX + b is

Gaussian and

Y ∼ N (Aµ + b,AΣAt).

Proof:

E(Y) = AE(X) + b

Cov(Y,Y) = E(A(X− µ)(X− µ)tAt) = AΣAt

• Uncorrelated Gaussian random variables are

independent.

• If [

y

z

]

∼ N (

[

µy

µz

]

,

[

Σyy Σyz

Σzy Σzz

]

), (2)

fY|Z(y|z) is the complex Gaussian density with

E(y|z) = µy +ΣyzΣ
−1
zz (z− µz)

Cov(y,yH |z) = Σyy −ΣyzΣ
−1
zz Σzy



Complex Random Vectors

Definition

The probability space of a complex random vector

X = XR + jXI is defined by the joint distribution of XR and

XI. A complex random vector X is proper (or

symmetrical) if

Cov(XXT ) = 0 ⇒
{

Cov(XR,X
t
R) = Cov(XI ,X

t
I)

Cov(XR,X
t
I) = −Cov(XI,X

t
R)

Remarks

• If X is symmetrical, then all second-order statistics

of X is contained in Cov(X,XH).

Cov(X,XH) = Cov(XR,X
T
R) +Cov(XI ,X

T
I )

−j(Cov(XR,X
T
I )−Cov(XI ,X

T
R))

= 2Cov(XR,X
T
R) + 2jCov(xI ,x

t
R)

• If X is proper, then AX + b is also proper (invariant

under affine transforms).

• For proper complex random vectors, we can use

complex arithmetics at a lower dimension by

changing transpose to Hermitian.



Complex Gaussian Random Vectors

Random vector x is complex Gaussian if

1. X is symetrical

2.
(
XR

XI

)

is Gaussian.

Properties

• Distribution: X ∼ Nc(µ,Σ) implies

E(X) = µ, cov(x,xH) = Σ,

fX(x) =
1

πn|Σ|exp{−(x− µ)HΣ−1(x− µ)}.

• When XR,XI ∼ N (0, N0
2
I), X ∼ Nc(0, N0I),

p(x) =
1

πnNn
0

exp{−||x||2
N0

}.

• A userful case: If X = S +N where S and N are

independent, N ∼ N (0, N0I),

fX|S(x|s) =
1

πnNn
0

exp{−||x− s||2
N0

}



Convexity and Jensen’s Inequality

Convex Set and Convex Function

A set X in R
n or C

n is convex if, for every x1,x2 ∈ X and

θ ∈ [0, 1], x = θx1 + (1− θ)x2 ∈ X. A real valued function f(·)
on a convex set X is convex (convex ∪) if, for every
x1,x2 ∈ X and θ ∈ [0, 1],

f(θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2)

A function is strictly convex if the strict inequality holds.

A function f is concave (convex ∩) if −f is convex.

x1

x1
x2x2

x

x

Convex Not convex

x1x1

f(x1)f(x1)

x2x2

f(x2)
f(x2)

xx

f(x)

f(x)

xx

yy

Convex function Concave function

Jensen’s Inequality

Let f be a real valued convex function. Then

f(E(x)) ≤ E(f(x))

For concave f , the inequality is reversed.



Markov and Chebyshev Inequalities

The Markov Inequality: For any non-negative function

h(·),
Pr[h(X) ≥ a] ≤ E(h(X))

a
∀a > 0.

h(x)

h(x) = (x
ǫ
)2

X
∆
= {x : h(x) ≥ a}

g(x) = a1X

1

h(x)h(x)

xx
ǫ−ǫ

Chebyshev Inequality: Setting h(x) = |x− E(X)|2,

Pr[
|X − E(X)|

ǫ
≥ 1] ≤ Var(X)

ǫ2

As an application, for i.i.d. Xi and E(Xi) = p,

YN =
1

N

N∑

i=1

Xi → Pr(|YN − p| > ǫ) ≤ Var(X)

Nǫ2

The probability of YN deviates from its mean decreases with O( 1
N
).

A Lower Bound

If h is a non-negative uniformly bounded by M , then

Pr(h(X) ≥ a) ≥ E(h(X))− a

M − a
, a ∈ [0,M).



Chernoff Bound

If we want to have exponentially decaying probability, we

may need the Chernoff bound. Let X be a random

variable. For any λ > 0 and τ ,

Pr[X ≥ τ ] ≤ exp{−λτ + φX(λ)}

where

φX(λ)
∆
= lnE(eλX)

is the cumulant generating function. Similarly, we also

have

Pr[X ≤ τ ] ≤ exp{λτ + φX(−λ)}

Proof: Use the Markov inequality with h(X) = eλX and a = eλτ

U(x− τ)

h(x) = (x
τ
)2

gλ(x) = eλ(x−τ)

1

h(x)

x

τ

Remark: The Chernoff bound can be tightened by

optimizing λ.



An Application of the Chernoff Bound

Consider

YN
∆
=

1

N

N∑

i=1

Xi, Xi
i.i.d.∼ B(p)

By the Chernoff bound,

Pr[YN ≥ a] = Pr[
∑

Xi ≥ Na] ≤ e−Nλa
E(eλ

∑
Xi)

= e−Nλa[E(eλXi)]N

= [E(eλ(Xi−a))]N

The best λ is given by solving

d

dλ
E(eλ(Xi−a))|λ=λo = 0 → E(Xie

λoXi)

E(eλoXi)
= a

For Bernoulli r.v. and a ∈ (p, 1],

peλo

peλo + (1− p)
= a → λo = ln

a(1− p)

p(1− a)
> 0

Thus,

Pr[YN ≥ a] ≤ [(
p

a
)a(

1− p

1− a
)1−a]N = exp{−ND(B(a)||B(p)))}

where

D(P1||P2)
∆
= EP1(log

P1

P2
)

is the Kullback-Leibler divergence, which is always

positive.



Weak Convergence and Weak LLN

Definition

Suppose X and {Xn, n = 1, 2, · · ·} are random variables

defined on the same probability space. We say that the

sequence (Xn) converges in probability, denoted as Xn
P→ X

if, for all ǫ,

Pr(|Xn −X| ≥ ǫ) → 0 as n → ∞

Example

Let Xn be independent variables with PMF

Pr(Xn = 1) = 1− 1

n
Pr(Xn = n) =

1

n

For any ǫ > 0,

Pr(|Xn − 1| > ǫ) = Pr(Xn = n) =
1

n
→ 0 as n → ∞

Therefore Xn
P→ 1.

The Weak Law of Large Numbers

Let Xi be a sequence of i.i.d. random variables with mean

µ and variance σ2. Then,

X̄n
∆
=

1

n

n∑

i=1

Xi
P→ µ

Proof: Use the Chebyshev Inequality for X = 1
N

∑N
i=1Xi.



Strong Convergence and Strong LLN

Definition

The sequence (Xn) converges almost surely (or strongly),

denoted by Xn
a.s.→ X, if

Pr(ω ∈ Ω : Xn(ω) → X(ω)) = Pr(Xn → X) = 1 as n → ∞
Equivalently, Xn

a.s.→ X if ∀ǫ > 0 and δ ∈ (0, 1), there exists n0

such that, for all n > n0,

Pr(
⋂

m>n

{|Xm −X| ≤ ǫ}) > 1− δ

Example Revisited Let Xn be independent variables with PMF

Pr(Xn = 1) = 1− 1

n
Pr(Xn = n) =

1

n
For every ǫ > 0, δ ∈ (0, 1), and N > n,

Pr(
⋂

m>n

{|Xm − 1| ≤ ǫ}) ≤ Pr(
N⋂

m=n+1

{|Xm − 1| ≤ ǫ}) =
N∏

m=n+1

Pr(|Xm − 1| ≤ ǫ)

=

N∏

m=n+1

(1− 1

m
) =

n

N
≤ 1− δ

Strong Law of Large Numbers

Suppose (Xn) are i.i.d. random variables with mean µ and

E(|X|4) < ∞. Then

X̄n
∆
=

1

n

n∑

i=1

Xi
a.s.→ µ

We can show that

Pr(|X̄n − µ| > ǫ) ≤ A

n2
,

where A is a constant. By the Borel-Cantellis Lemma, {|X̄n − µ| > ǫ} happens only finite number of

times.



Convergence in Distribution and CLT

Definition

Suppose X and {Xn, n = 1, 2, · · ·} are random variables

defined on the same probability space. We say that the

sequence (Xn) with CDF FXn(x) converges in distribution to

X with CDF FX(x), denoted as Xn
D→ X, if FXn(x) → FX(x)

for all x where FX(x) is continuous.

Central Limit Theorem

Let {Xn} be i.i.d. random variables with mean µ and

variance σ2. Denote Sn = X1 + · · · +Xn. Then
Sn − nµ

σ
√
n

D→ N (0, 1)

The law of the iterative lograrithm

If {Xi} are i.i.d. with mean µ and variance σ2. Then

Pr(lim sup
n→∞

Sn − nµ

σ
√
2n log log n

= 1) = 1

This means that the event, with probability 1, the event

{Sn − nµ

σ
> α

√

2n log log n}

should happen only finite number of times if α > 1 and

infinitely many times if α < 1.


