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Outline

Concepts
e Probability space
e Conditional probability and statistical independence.
e Random variables, distributions and densities.
e Expectations and conditional expectations.
e Real and complex Gaussian variables and vectors.

e Inequalities
e Convergence, LLN and CLT.



The Probability Space: Definition

Definition:

A probability space is defined by (Q, F, Pr)

1. Q is the sample space that contains the set of
outcomes.

2. F is a o-field of subsets of Q (events):
(i)oeF. (i) If EcF, then & F.
(iii) If & € F, then U2, &, € F.
3. Pr is a function on F satisfying
(iJo<pr(e) <1, (ii) P(Q) =1.
(iii) If &,,€,,--- are disjoint, then
Pr(UiZ, &) = 2 Pr(&i)

Why Do We Need Restrictions on Events?

Let Q 2 {(z,y)[2? +y? = 1}. There exists' a set & € Q such
that

1. for any rational ¢,0 € [0,27) and ¢ # 0, the rotation
of & by 6 and ¢ are disjoint, ie., E(0)E(o) = 0.

2. The union of all € rotated by rational ¢ is (.
If Pr(€) =z, then

1=Pr(Q) =Pr(| J&0) =) Pr€®)=) =

TM. Capiriski and P. Knopp, Measure, Integral and Probability, Springer, 1999.




The Probability Space: Examples

Sample Space O

e Picking the “lucky” person out of a class of 30 to
receive an A: O ={1,2,---,29,30}.

e Taking the qualify exam until pass:
() = {P,FP,FFP,FFFP, -}

e The time you wake up: Q3 = {(00: 00,24 : 00]}

e Throwing a dart to a unit disk:
Q= {(2,y)|a? + 2 < 1),

Events
Consider O

€o: Someone is lucky: &, = Q.

&,: the “lucky” person has an even ID:
& ={2,4,6,---,30}.

&, The “lucky” person has an even number or a
number between 10 and 20. & = & [ J{11,13,---,19}.

€4 The “lucky” person has an odd number less than
10. &, = &L, -, 10},



Elementary Properties

e Pr(A9) =1—Pr(A), Pr(0)=0.
o If A C B, then Pr(B) =Pr(A) + Pr(B — A) > Pr(A).

e Union bound (Boole's inequality):

PT(U?; Ai) < Z?; Pr(A;)

¢ Inclusion-exclusion:

Pl”(ﬂl UAQ = Pf(ﬂl) + PF(.AQ) — Pl”(ﬂl mA2>

PI(O.A ZPI ZPI A~mA~

1<j

+Z Pr(Ai (A [ )Ax) —

1<j<k
k

H=DM Y P Ay

1 <19<--<1} r=1

e Bonferroni's inequality: Pr(N, A;) >1— 3", Pr(A9)



Sequence of Events

Monotone Convergence
If &, increases, ie, &, C& C---, and let & 2 U=, &. Then

Pr(€) = lim Pr(&;)

1—00

If & decreases, ie, & 2& 2.+, and let E=N>2,&;,. Then

Pr(€) = lim Pr(&;)

1—00

Limits of Sequences
Let {€,} be an arbitrary sequence of events. Define limits

E" = limsup &; = ﬁoﬁn, — liirgglf& 2 Gﬁgn

1=1 n=1 1=1n=1

Then &* is the event that infinitely many of {€,} occur
and &% is the event that all except a finite number of &,
occut, ie,

& = {weQ:we &, for infinitely many values of i},
& = {weQ:we &, for all but finite many of i},

Now if we know Pr(€,), what can we say about Pr(&*)?

Borel-Cantelli Lemmas
L. If Y Pr(&) < oo, then Pr(&*) = 0.

2. 1f 5" Pr(&;) diverges, and {&,} are independent, then
Pr(€*) = 1.



Example: Passing the Qualify

Consider the random experiment: taking the Qualify exam. The

probability model is given by (€2, F, P) where
e the sample space ), = {P,FP, FFP,FFFP,--- },
e the o-field F includes all subsets of (), i.e., F = 2.

e If the probability of passing is p, and assume that you learned

nothing from the last time, then

PH(EE - EP) = (1—p)'p

k
Q: What is the probability that you will pass in no more than three

tries?
& ={P,FP,FFP}, Pr(&)=p+(1—-pp+(1-pp’
Q: What is the probability that you pass eventually?

Let €; be the event that you pass in no more than ¢ tries. Then &

is the event that you have not succeeded after i tries.
Pr(€)=1-"Pr(€) =1~ (1-p)

The event of pass eventually is given by

€ = U&, r(€) = lim Pr(&;) =

1—00

Q: What if your chance of passing increases with the number of tries,
you would expect to do better, and Pr(€) = 1. How about your

chance actually decreases with the number of tries?



Conditional Probability

Definition
Let €, and &, be two events. Assuming that Pr(&;) # 0, the
conditional probability of the event &, given that &, has

already occurred is given by

Pr(€:(1 &
Pf(81‘82) — (Pl"l(g) 2)
é &y =

We can think “conditioning” as generating a new
probability model (based on the observation of event &,)
from the old by treating &, as the new sample space ¢



Example: Binary Symmetrical Channel

The Channel
The binary symmetric channel (BSC) is defined by the
conditional probability

Pr(Y =0/ X =0) = Pr(Y =1/ X =1)=1—p,

PriY =11 X =0) = Pr(Y =0/ X =1)=p

R b . 0

The Sample Space
QO={(X=2Y =y),z,y,€{0,1}} ={(0,0),(0,1),(1,0), (1,1)}.
The o-field
F={0,2,{(0,0)},- -, {(1, D}, {0, 0} [ J{(0, 1)} - -}

The Probability Measure
Suppose that {X =0} and {X =1} are equally likely.

Pri{(0,0)}] = Pr(X =0)Pr(Y =0|X =0) = 1—?29
Pri{(1,1)}] = Pr(X =1)Pr(Y =1|X =1) = 1—?29
Pr({(1,0)}] = Pr(X =0)Pr(Y =1|X = 0) = %
Pri{(0,1)}] = Pr(X = 1)Pr(Y =0|X =1) = g



Total Probability Theorem

Total Probability Theorem

If {&;} partition Q, e,

then

&
€3
&1
&4
Q
The Bayes Formula
Pr(&,|B) Pr(B|E;) Pr(&;)

> Pr(&;) Pr(B|E))



Statistical Independence

Definition
Two events &, and &, are statistically independent if

81 m 82 Pl” 82)
which implies that
Pf((c:l’gg) = Pf(gl), PT(EQ‘Sl) = Pl“(gg)

Events {&,, &, &3} are statistically independent if

Pr(& ()&) = Pr(&)Pr(&)
Pr(€:()€s) = Pr(&1) Pr(&;)
Pr(€:()€s) = Pr(&y) Pr(&;)
Pr(& () &2 )€3) = Pr(€1) Pr(€y) Pr(&s)
In general, events {&,,---,¢&,} are statistically independent

if

Pr(&i (V&[] )Eir) = Pr(Ei) Pr(E,) - - Pr(E;y)

for all {iy,---,ix} Cc {1,---,n}.



Random Variables

Definition
Given any probability space (2, F,Pr), a random variable is

a function
X: Q= R

such that, for all z, {w e Q: X(w) <z} e F.

wg.

°‘i

1

Q
° oo X (w)
Xlwr)  X(wn) X(ws)

Notations
We use capital letters to indicate random variables and

their corresponding small letters to indicate their
“realizations” *. For example, in X =z, X is the random
variable (a function) and = is the value that X takes (with

some probability).

*We may use small letters to denote random variables when there is no confusion



Cumulative Distribution Function

The cumulative distribution function (CDF) of a random
variable X is
Fy(z) 2 Pr(X < z)

Properties
1. Fy(—o00) =0, Fy(co) = 1.
2.1t x <y, then Fy(z) < Fx(y).
3. F(-) is right continuous, ie., limx_o+ Fy(z +A) = Fy(z)
4. Pr(z < X <y) = Fx(y) — Fx(z).
5. A useful interpretation is
Pr(X € (v,2 +dx)) = Fy(z+dz) — Fy(z) 2 dFx(z)
Pr(X e A) = /AdFX(x)

0. Pr(X = z0) = Fx(zo) — limypy, Fx(y).



Probability Mass Function

For discrete random variables, ie, X takes values in a
countable set {z;}. The probability mass function (PMF)
of is given by

fxlz) 2 Pr(X = z)

A

0 I I9 T3

[x(7)

The PMF is related to CDF by
Fx(z)= 3" fx(u)

uuly
For any event &, we have

Pr(€) =)  fx(u)

ueé

To unify notations, we also write the above as

Pre) = [ felayds = [ dsia)



Probability Density Function

A random variable is continuous if its distribution function
can be expressed as

Fe)= [ fxtude (1)

for some integrable function fy: R — [0,00). Function fy(z)
is the probability density function (pdf) of X:

d

f)((x) = @FX(LL’)

Properties:
* fx(u) = 0.
o |7 [x(u)du=1.
o [V fx(u)du = Pr(a < X <b).
o Pr(€) = [, fx(u)du.

f ()




Random Vectors

Given a random vector X = [X1,---, X,] defined on the
probability space (Q, F, P),

e the joint density distribution function is given by
Fx(x) =Pr(X < x) 2 Pr(X) < a1, +, X, < ).
e The joint density function is given by

o
fX(X) - 8951 < 0x

Fx(X)

e The marginal distribution of X; is given by
Fx.(x) 2 Pr(X; < z) = Fx(oco,- -, 00, &_, 00, * 00)
ith
e The marginal density is given by
d

o) = P @) = [ o doiidai -+ da,



Independent Random Variables

Recall Independent Events
e A and B are statistically independent if
Pr(A()B) = Pr(A) Pr(B)

e Events {A, B, C} are statistically independent if

Independent Random Variables
We call n» random variables X = (X;,---, X,,) statistically
independent if

Fx(x) = Fx,(21) - - - Fx, ()
or equivalently

fx(x) = fxy(@1) - - fx, (2n)



Conditioning on Random Variables

Conditional Distribution

Consider random variables X and Y with joint distribution
(or density) function Fyy(z,y) (fxy(z,y)). The conditional
distribution of X given Y =y is defined as

Pr(X <z,y <Y <y+e
ja = Pr(X <z|Y =y) =i
X\Y(x‘y) r( z| ) 0 Priy <Y <y+e

The conditional density function of Fy, written as fxy, is
given by

D fly) #0

0 otherwise

fX\Y(x’y) - {

where fy(y) = [ fxy(u,y)du is the marginal pdf of Y.
Further,

Fov(ely) = [ Favluly)da
If X and Y are independent, fyy(z|y) = fx(z).

Example: Consider independent random variables X and N such that
Y=X+N,

where X is discrete with PMF fx(x) and N is continuous with PDF fy(n). Then
Pr(N<y—uz, X =1

Fyix(ylz) = Pr(Y <y|X =2) = o) = Fn(y — )
_ _ L P X =ay <Y <y+e  frix(lr)fx()
FX|y($|y) - PI‘(X - .IlY - y) _ lelﬂ)l Pr(y <Y S y+€) _ fY(y)

frixwlz) = fy(ly—2)



Expectation of Random Variables

Definition
For a random variable X

BOO) = [ wdre), (X)) = [ g)ird

Properties

1. The indicator function of an event & is defined as

18(33)_{1 r e

0 otherwise

We then have
Pr(€) = [ dFxla) = Bl1e(X)
2. If X is nonnegative random variable with CDF F,
E(X) = /000(1 ~ Fy(2))da

3. Linearity: E(aX + 8Y) = aE(X) + BE(Y).

4. 1f X and Y are independent, then
E(h(X)g(Y)) = E(h(X))E(g(Y)).

5. Variance and Covariance

Var(X) 2 E(X - E(X))
Cov(X,Y) 2 EE(X — E(X)E(Y —E(Y))).

The standard deviation of X is y/Var(X).



6. X and Y are uncorrelated if Cov(X,Y) = 0.

7. For a real random vector X = [X|,---, X, %,

Mean: E(X)=[E(X)), -, E(X,)]"
Covariance: Cov(X,X)=E(X — EX))(X - EX))"
e Cov(X,X) is always positive (semi) definite.
o If X is a vector of uncorrelated random

variables, then Cov(X, X) is diagonal with
variances as diagonal entries.



Conditional Expectation

The conditional expectation of ¢(X) given Y =y is given by

E(g(X)|Y = y) = / 9(x) fxy (x]y)dx

Note that E(¢(X)|Y =y) is a function of y.

Conditional Mean as a Random Variable

e We denote E(¢(X)|Y) as the random variable that
takes the value E(¢(X)|Y =y) when Y =y.

e Successive conditioning:
E(9(X)) = E(E(¢(X)[Y))

As an example, suppose that Y ~ ¢/(0,1) and

X ~U(0,Y).
E(X) = E(E(X|Y)) =E(3) = -
E(X?) = E(E(X’|Y))=E(%) =

Product Expectation Theorem
If ¢(Y) is bounded and E(h(X)) < oo, then

E(h(X)g(Y)) = E(g(Y)E(h(X)]Y))
A special case is when ¢(y) =1 and h(z) =2

E(X) = E(E(X]Y))



The Gaussian Random Variable

fx(x)

RY
\/217 exp{— (xzag) }
2

V22

I
Q

The Q(-) function

A 0'2 =1 o
a 3 Q) = [* fx(a)dr
Q(a) \/%/ e Zdu J /

0 «Q Q

Properties
1. Probability: If X ~ N (u,0?), then

PiX >a] = Q1) Pr(X <a)=Q1—9

o o

2. Bounds:




Q(+), erf(-), and erfc(-)

Definitions:
2 R
erf(a) = ﬁ/ e " du
0
erfe(la) = %/ e_uzdu:l—erf(oz)
fX(u>NN(07%)

erf(a) = % Iy e " du

AT

0 Q U

Relations

1 Qo 1 Qo
Qla) = —erfc(ﬁ) = 5(1 —erf(—=))

erfela) = 2Q(+v2a)

5



Gaussian Random Vectors

A random vector X = [X1,---, X,]7 is Gaussian if

1 1 S
fX(X):\/(27r)”det(2)€xp{_§(x_”) ST (X =)}

E(X1)
p = EX)= :
E(X,)

Y = E{(X-m)(X-m)'}

Cov(Xy, X)) Cov(Xy, X)) --- Cov(Xy,X,)
| Cov(Xy, X1)  Cov(Xy, Xp) -+ Cov(Xy, X))
Cov(X,,X;) Cov(X, X;) --- Cov(X,, X,)

e Random variables X, -, X, are called jointly
Gaussian.

e The Gaussian distribution is completely specified by
the mean and the covariance.



Properties of Gaussian Random Vectors

Suppose that X ~ A (u, X).

e Jointly Gaussian implies marginally Gaussian. In
particular,

Any sub-vector of X is Gaussian. (The converse is
not true in general!)

e For any matrix A and vector b, Y =AX +b is
Gaussian and

Y ~ N(Ap+b, AXA").
Proof:

E(Y) = AEX)+b
Cov(Y.Y) = E(A(X — p)(X — p)'A!) = ASA'

e Uncorrelated Gaussian random variables are
independent.
Hy, iy Dy

y
MG B s

fyiz(ylz) is the complex Gaussian density with

)

E(y|Z) - I"’y + Eyzzz_zl(z o I"’z)
COV(Y) yH|Z) - Eyy - Eyzzz_zlzzy



Complex Random Vectors

Definition

The probability space of a complex random vector

X = X+ jX; is defined by the joint distribution of X5 and
X;. A complex random vector X is proper (or
symmetrical) if

Cov(Xp, Xt) = Cov(X;, XY)

XX") =
Cov( )=0 = { Cov(Xp, X4) = —Cov(X;, XY

Remarks
o If X is symmetrical, then all second-order statistics
of X is contained in Cov(X, X%).

Cov(X,X") = Cov(Xy,X%) + Cov(X;, X7)
—j(Cov(Xp, XT) — Cov(X;, X%))
— 2Cov(Xp, X5) + 2jCov(x;, x5)

o If X is proper, then AX + b is also proper (invariant
under affine transforms).

e For proper complex random vectors, we can use
complex arithmetics at a lower dimension by
changing transpose to Hermitian.



Complex Gaussian Random Vectors

Random vector x is complex Gaussian if

1. X is symetrical

2. (XR) Is Gaussian.
X7

Properties
e Distribution: X ~ N,(u, %) implies

E(X) = ,LL,fOU(X,XH) =3,
fx(x) = sgerp{=(e— ) 870 - )}

e When Xz, X; ~ N(0,221), X ~ N.(0, NoI),

e A userful case: If X =S+ N where S and N are
independent, N ~ N(0, NyI),

. [Ix — s||”
fxs(x[s) = WRNSL%Z?{ N, }




Convexity and Jensen’s Inequality

Convex Set and Convex Function

A set X in R" or €" is convex if, for every x;,x, € X and

0 cl0,1], x=0x; +(1—0)x, € X. A real valued function f(.)
on a convex set X is convex (convex U) if, for every
X1,Xp € X and 6 € [0,1],

f(Ox1+ (1 —0)x9) < Of(x1) + (1 —0)f(x2)

A function is strictly convex if the strict inequality holds.
A function fis concave (convex N) if —f is convex.

f(X) /,‘f(X2)

X1 X X2 X1 X X2

Convex function Concave function

Jensen’s Inequality
Let f be a real valued convex function. Then

f(E(x)) < E(f(x))

For concave f, the inequality is reversed.



Markov and Chebyshev Inequalities

The Markov Inequality: For any non-negative function

h(-),

Pr[h(X) > a] < w Va > 0.
hz) = (£)°
h(z) h(z) h(x)
/\// 9(x) = aly
S SR
/ ' —€ €

X2 {z:h(z)>a}

Chebyshev Inequality: Setting h(z) = |z — E(X)|?,
X —E(X)| Var(X)

P
r| . 2

> 1] <

As an application, for i.i.d. X; and E(X;) = p,

Var(X)

Ne?

N
1
Yy =D Xi = Pr(|Yy —p| > ) <

1=1

The probability of Yy deviates from its mean decreases with O(+).

A Lower Bound
If 1 is a non-negative uniformly bounded by A7, then

Pr(h(X) > a) > B{(X)) —a

0, M).
> a) 2 —————, a&c[0,M)




Chernoff Bound

If we want to have exponentially decaying probability, we
may need the Chernoff bound. Let X be a random
variable. For any A >0 and 7,

PriX > 7] < exp{—A7+ ¢x(A)}

where
Ox () 2 E(eAX)

is the cumulant generating function. Similarly, we also
have
PriX < 7] <exp{AT + ¢x (=)}

Proof: Use the Markov inequality with A(X) = e*X and a = '™

Remark: The Chernoff bound can be tightened by
optimizing .



An Application of the Chernoff Bound

Consider
vy a1 ZXZ, X; "~ B(p)

By the Chernoff bound,

PrYy > a] = Pr[} X; > Na] < e "VE(* =)
e—N)\a []E(eAXi)]N

= [E()

The best ) is given by solving

d E(XZ'B)\OXi)

A(Xi-a) _ _
e her, =02 E(ehX)
For Bernoulli r.v. and a € (p, 1],
pe _a(l—p)
e+ (1= p) —a—>)\0—lnp(1_a) >0
Thus,
1
Pr[Yy > ] < [(2) (=)' = exp{~ND(B(a)[|B(p)))}
where b
D(P{]|Py) 2 Ep,(log Fl)

is the Kullback-Leibler divergence, which is always
positive.



Weak Convergence and Weak LLN

Definition

Suppose X and {X,,n =1,2,---} are random variables
defined on the same probability space. We say that the
sequence (X,) converges in probability, denoted as X, 5 X
if, for all ¢,

Pr(| X, — X|>¢€¢ —0 asn—

Example

Let X, be independent variables with PMF
Pr(X, = 1) =1 — = Pr(X,—n)——

n n

For any ¢ > 0,

1
Pr(| X, — 1] >¢)=Pr(X,=n)=——0asn—
n

Therefore X, 5 1.

The Weak Law of Large Numbers
Let X, be a sequence of i.i.d. random variables with mean
r and variance o?. Then,

A

'U
=
(]
@]
—h
-
n
)
(s
=5
®
(D)
=5
@
o

<
n
=5
)
<
=3
)
e
c
L
=
<
3
=
I
=|=
=
L



Strong Convergence and Strong LLN

Definition
The sequence (X,) converges almost surely (or strongly),
denoted by X, 2% X, if

Prwe Q: X,(w) = X(w))=Pr(X,, > X)=1asn— o

Equivalently, X, 23 X if Ve >0 and ¢ € (0,1), there exists n,
such that, for all n > ny,

Pr([{|Xm—X|<e})>1-4

m>n

Example Revisited Let X, be independent variables with PMF

1 1
Pr(X,=1)=1-—— Pr(X,=n)=—
r( ) — P n)=—

For every e > 0, € (0,1), and N > n,

Pr((J{|Xm—1]<€}) < ﬂ (X, —1 <€) = H Pr(|X,, — 1| <€)

m>n m=n-+1 m=n-+1
N

- 11 (1—%):%§1—5

Strong Law of Large Numbers

Suppose (X,) are i.i.d. random variables with mean y and
E(|X*) < co. Then

We can show that A
Pr(|X, —p|l >¢) < ol

where A is a constant. By the Borel-Cantellis Lemma, {|X,, — 11| > €} happens only finite number of
times.



Convergence in Distribution and CLT

Definition

Suppose X and {X,,n =1,2,---} are random variables
defined on the same probability space. We say that the
sequence (X,) with CDF Fx (x) converges in distribution to
X with CDF Fy(z), denoted as X, 2 X, if Fy (z) — Fy(z)
for all = where Fx(z) is continuous.

Central Limit Theorem
Let {X,} be i.i.d. random variables with mean x and
variance o°. Denote S, = X, +---+ X,,. Then

Sp—np p
T — N(0,1)

The law of the iterative lograrithm
If {X;} are i.i.d. with mean x and variance 2. Then
Sp — np

Pr(li =1)=1
r{ lnm_igp ov/2nloglogn )

This means that the event, with probability 1, the event
{ o

should happen only finite number of times if a > 1 and
infinitely many times if o < 1.

Sp —
o ay/2nloglog n}




