Recap: PCA on Gaussian Mixtures

- \(k\) Gaussians: each sample is \(x = Ah + z\).
- \(h \in \{e_1, \ldots, e_k\}\), the basis vectors. \(\mathbb{E}[h] = w\).
- \(A \in \mathbb{R}^{d \times k}\): columns are component means.
- Let \(\mu := Aw\) be the mean.
- \(z \sim \mathcal{N}(0, \sigma^2 I)\) is white Gaussian noise.

\[
\mathbb{E}[(x - \mu)(x - \mu)^\top] = \sum_{i \in [k]} w_i (a_i - \mu)(a_i - \mu)^\top + \sigma^2 I.
\]

Can obtain \(\text{span}(A)\).
But what about columns of \(A\)?
Learning Gaussian mixtures through clustering

Learning A through Spectral Clustering
- Project samples x on to $\text{span}(A)$.
- Distance-based clustering (e.g. k-means).
- A series of works, e.g. Vempala & Wang.

Failure to cluster under large variance.

Learning Gaussian Mixtures Without Separation Constraints?
Multi-variate higher order moments form tensors.

Are there spectral operations on tensors akin to PCA?

Matrix

- $\mathbb{E}[x \otimes x] \in \mathbb{R}^{d \times d}$ is a second order tensor.
- $\mathbb{E}[x \otimes x]_{i_1,i_2} = \mathbb{E}[x_{i_1} x_{i_2}]$.
- For matrices: $\mathbb{E}[x \otimes x] = \mathbb{E}[xx^T]$.

Tensor

- $\mathbb{E}[x \otimes x \otimes x] \in \mathbb{R}^{d \times d \times d}$ is a third order tensor.
- $\mathbb{E}[x \otimes x \otimes x]_{i_1,i_2,i_3} = \mathbb{E}[x_{i_1} x_{i_2} x_{i_3}]$.

Consider mixture of k Gaussians: each sample is $x = Ah + z$.

- $h \in [e_1, \ldots, e_k]$, the basis vectors. $E[h] = w$.
- $A \in \mathbb{R}^{d \times k}$: columns are component means. $\mu := Aw$ be the mean.
- $z \sim \mathcal{N}(0, \sigma^2 I)$ is white Gaussian noise.

$$E[x \otimes x \otimes x] = \sum_i w_i a_i \otimes a_i \otimes a_i + \sigma^2 \sum_i (\mu \otimes e_i \otimes e_i + \ldots)$$

Intuition behind equation

$$E[x \otimes x \otimes x] = E[(Ah) \otimes (Ah) \otimes (Ah)] + E[(Ah) \otimes z \otimes z] + \ldots$$

$$= \sum_i w_i \cdot a_i \otimes a_i \otimes a_i + \sigma^2 \sum_i \mu \otimes e_i \otimes e_i + \ldots$$

How to recover parameters A and w from third order moment?
Tensor Slices

\[M_3 = \sum_i w_i a_i \otimes a_i \otimes a_i, \quad M_2 = \sum_i w_i a_i \otimes a_i. \]

Multilinear transformation of tensor

\[M_3(B, C, D) := \sum_i w_i (B^T a_i) \cdot (C^T a_i) \cdot (D^T a_i) \]

Slice of a tensor

\[M_3(I, I, r) = \sum_i w_i a_i \otimes a_i \langle a_i, r \rangle = A \text{Diag}(w) \text{Diag}(A^T r) A^T \]

\[M_3(I, I, r) = A \cdot \text{Diag}(w) \text{Diag}(A^T r) \cdot A^T \]

\[M_2 = A \cdot \text{Diag}(w) \cdot A^T \]
Eigen-decomposition

\[
M_3(I, I, r) = A \cdot \text{Diag}(w) \text{Diag}(A^\top r) \cdot A^\top, \quad M_2 = A \cdot \text{Diag}(w) \cdot A^\top.
\]

Assumption: \(A \in \mathbb{R}^{d \times k} \) has full column rank.

- \(M_2 = U \Lambda U^\top \) be eigen-decomposition. \(U \in \mathbb{R}^{d \times k} \).
- \(U^\top M_2 U = \Lambda \in \mathbb{R}^{k \times k} \) is invertible.

\[
X = (U^\top M_3(I, I, r) U) (U^\top M_2 U)^{-1} = V \cdot \text{Diag}(\tilde{\Lambda}) \cdot V^{-1}.
\]

- **Substitution:** \(X = (U^\top A) \text{Diag}(A^\top r) (U^\top A)^{-1} \).

- We have \(v_i \propto U^\top a_i \).

Technical Detail

\(r = U \theta \) and \(\theta \) drawn uniformly from sphere to ensure eigen gap.
Shortcomings

- The resulting product is not symmetric. Eigen-decomposition $V \text{Diag}(\tilde{\lambda}) V^{-1}$ does not result in orthonormal V. More involved in practice.

- Require good eigen-gap in $\text{Diag}(\tilde{\lambda})$ for recovery. For $r = U \theta$, where θ is drawn uniformly from unit sphere, gap is $1/k^{2.5}$. Numerical instability in practice.

- $M_3(I, I, r)$ is only a (random) slice of the tensor. Full information is not utilized.
Tensor Factorization

- Recover A and w from M_2 and M_3.

$$M_2 = \sum_i w_i a_i \otimes a_i, \quad M_3 = \sum_i w_i a_i \otimes a_i \otimes a_i.$$

- $a \otimes a \otimes a$ is a rank-1 tensor since, its $(i_1, i_2, i_3)^{th}$ entry is $a_{i_1} a_{i_2} a_{i_3}$.
- M_3 is a sum of rank-1 terms.
- When is it the most compact representation? (Identifiability).
- Can we recover the decomposition? (Algorithm?)
References

• Monograph on spectral learning on matrices and tensors (preprint available on Piazza)
• Slides from MLSS: available on http://tensorlab.cms.caltech.edu/users/anima/